From minimal non-abelian subgroups to finite non-abelian p-groups

Qinhai Zhang

Shanxi Normal University, China

Conference of Groups St Andrews 2017 in Birmingham

7th August 2017
Minimal non-abelian p-groups

A p-group G is said to be minimal non-abelian if G is non-abelian but all its proper subgroups are abelian.
Minimal non-abelian p-groups

A p-group G is said to be minimal non-abelian if G is non-abelian but all its proper subgroups are abelian.

Some known facts about minimal non-abelian p-groups are:
Minimal non-abelian p-groups

A p-group G is said to be minimal non-abelian if G is non-abelian but all its proper subgroups are abelian.

Some known facts about minimal non-abelian p-groups are:

• the smallest order of minimal non-abelian p-groups is p^3.
A p-group G is said to be \textit{minimal non-abelian} if G is non-abelian but all its proper subgroups are abelian.

Some known facts about minimal non-abelian p-groups are:

- the smallest order of minimal non-abelian p-groups is p^3.
- A minimal non-abelian p-group is a finite non-abelian p-group with the “\textit{largest}” and \textit{most} abelian subgroups.
A p-group G is said to be minimal non-abelian if G is non-abelian but all its proper subgroups are abelian.

Some known facts about minimal non-abelian p-groups are:

- the smallest order of minimal non-abelian p-groups is p^3.
- A minimal non-abelian p-group is a finite non-abelian p-group with the “largest” and most abelian subgroups.
- Every finite non-abelian p-group contains a minimal non-abelian subgroup.
A p-group G is said to be **minimal non-abelian** if G is non-abelian but all its proper subgroups are abelian.

Some known facts about minimal non-abelian p-groups are:

- the smallest order of minimal non-abelian p-groups is p^3.
- A minimal non-abelian p-group is a finite non-abelian p-group with the “largest” and most abelian subgroups.
- Every finite non-abelian p-group contains a minimal non-abelian subgroup.
- A finite non-abelian p-group is generated by its minimal non-abelian subgroups.
In a sense, a minimal non-abelian subgroup is a “basic element” of a finite p-group. As numerous results show, the structure of finite p-groups depends essentially on its minimal non-abelian subgroups.
In a sense, a minimal non-abelian subgroup is a “basic element” of a finite p-group. As numerous results show, the structure of finite p-groups depends essentially on its minimal non-abelian subgroups.

Based on the observation, Y. Berkovich and Z. Janko in their joint paper [Contemp. Math., 402(2006), 13–93] introduced a more general concept than that of a minimal non-abelian group. That is, A_t-groups.
A_t-groups

In a sense, a minimal non-abelian subgroup is a “basic element” of a finite p-group. As numerous results show, the structure of finite p-groups depends essentially on its minimal non-abelian subgroups.

Based on the observation, Y. Berkovich and Z. Janko in their joint paper \[Contemp. Math., 402(2006), 13–93\] introduced a more general concept than that of a minimal non-abelian group. That is, A_t-groups.

A finite non-abelian p-group is called an A_t-group if its every subgroup of index p^t is abelian, but it has at least one non-abelian subgroup of index p^{t-1}.
In a sense, a minimal non-abelian subgroup is a “basic element” of a finite p-group. As numerous results show, the structure of finite p-groups depends essentially on its minimal non-abelian subgroups.

Based on the observation, Y. Berkovich and Z. Janko in their joint paper [Contemp. Math., 402(2006), 13–93] introduced a more general concept than that of a minimal non-abelian group. That is, A_t-groups.

A finite non-abelian p-group is called an A_t-group if its every subgroup of index p^t is abelian, but it has at least one non-abelian subgroup of index p^{t-1}.

In other words, an A_t-group is a finite non-abelian p-group whose every non-abelian subgroup of index p^{t-1} is minimal non-abelian.
A_t-groups

In a sense, a **minimal non-abelian subgroup** is a “basic element” of a finite p-group. As numerous results show, the structure of finite p-groups depends essentially on its minimal non-abelian subgroups.

Based on the observation, Y. Berkovich and Z. Janko in their joint paper [Contemp. Math., 402(2006), 13–93] introduced a more general concept than that of a minimal non-abelian group. That is, A_t-groups.

A finite non-abelian p-group is called an **A_t-group** if its every subgroup of index p^t is abelian, but it has at least one non-abelian subgroup of index p^{t-1}.

In other words, an **A_t-group** is a finite non-abelian p-group whose every non-abelian subgroup of index p^{t-1} is minimal non-abelian.

For convenience, abelian p-groups are called **A_0-groups**.
In a sense, a minimal non-abelian subgroup is a "basic element" of a finite p-group. As numerous results show, the structure of finite p-groups depends essentially on its minimal non-abelian subgroups.

Based on the observation, Y. Berkovich and Z. Janko in their joint paper \cite{Contemp. Math., 402(2006), 13–93} introduced a more general concept than that of a minimal non-abelian group. That is, A_t-groups.

A finite non-abelian p-group is called an A_t-group if its every subgroup of index p^t is abelian, but it has at least one non-abelian subgroup of index p^{t-1}.

In other words, an A_t-group is a finite non-abelian p-group whose every non-abelian subgroup of index p^{t-1} is minimal non-abelian.

For convenience, abelian p-groups are called A_0-groups.
The structure of subgroups of \mathcal{A}_t-groups

The structure of subgroups of \mathcal{A}_t-groups

<table>
<thead>
<tr>
<th>G is an \mathcal{A}_t-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{A}_0, $\mathcal{A}1$, $\mathcal{A}2$, \cdots, $\mathcal{A}{t-2}$, $\mathcal{A}{t-1}$</td>
</tr>
<tr>
<td>\mathcal{A}_0, \mathcal{A}_1, $\mathcal{A}2$, \cdots, $\mathcal{A}{t-2}$</td>
</tr>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2</td>
</tr>
<tr>
<td>\mathcal{A}_0, \mathcal{A}_1</td>
</tr>
<tr>
<td>\mathcal{A}_0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>p^n</td>
</tr>
<tr>
<td>p^{n-1}</td>
</tr>
<tr>
<td>p^{n-2}</td>
</tr>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>$p^{n-(t-2)}$</td>
</tr>
<tr>
<td>$p^{n-(t-1)}$</td>
</tr>
<tr>
<td>p^{n-t}</td>
</tr>
</tbody>
</table>
From minimal non-abelian subgroups to finite non-abelian p-groups

Qinhai Zhang

The structure of subgroups of A_t-groups

G is an A_t-group

$A_0, A_1, A_2, \cdots, A_{t-2}, A_{t-1}$

$A_0, A_1, A_2, \cdots, A_{t-2}$

\cdots \hspace{2cm} \cdots

A_0, A_1, A_2

A_0, A_1

A_0

order

p^n

p^{n-1}

p^{n-2}

\cdots

$p^{n-(t-2)}$

$p^{n-(t-1)}$

p^{n-t}

All possible types of A_t-subgroups of order p^{n-j} are $A_0, A_1, A_2, \cdots, A_{t-2}, A_{t-j}$ and G has at least one A_{t-j}-subgroup for $j = 1, 2, \cdots, t, t \leq n - 2$.
A_t-groups = finite p-groups

- An A_1-group is exactly a minimal non-abelian p-group.
A_t-groups= finite p-groups

- An A_1-group is exactly a minimal non-abelian p-group.
- Every finite p-group must be an A_t-group for some t. Hence the study of finite p-groups is equivalent to that of A_t-groups. In particular, if a finite p-group is of order p^n, then $t \leq n - 2$.
\(\mathcal{A}_t \)-groups = finite \(p \)-groups

- An \(\mathcal{A}_1 \)-group is exactly a minimal non-abelian \(p \)-group.
- Every finite \(p \)-group must be an \(\mathcal{A}_t \)-group for some \(t \). Hence the study of finite \(p \)-groups is equivalent to that of \(\mathcal{A}_t \)-groups. In particular, if a finite \(p \)-group is of order \(p^n \), then \(t \leq n - 2 \).
- The classification of \(\mathcal{A}_t \)-groups for all \(t \) is hopeless. However, the classification of \(\mathcal{A}_t \)-groups is possible and useful for small \(t \).
\(\mathcal{A}_t \)-groups = finite \(p \)-groups

- An \(\mathcal{A}_1 \)-group is exactly a minimal non-abelian \(p \)-group.
- Every finite \(p \)-group must be an \(\mathcal{A}_t \)-group for some \(t \). Hence the study of finite \(p \)-groups is equivalent to that of \(\mathcal{A}_t \)-groups. In particular, if a finite \(p \)-group is of order \(p^n \), then \(t \leq n - 2 \).
- The classification of \(\mathcal{A}_t \)-groups for all \(t \) is hopeless. However, the classification of \(\mathcal{A}_t \)-groups is possible and useful for small \(t \).

The talk is to introduce some results about finite \(p \)-groups determined by \(\mathcal{A}_1 \)-subgroups. These results were obtained by the members of my team, a \(p \)-group team of Shanxi Normal University, and me.
\(A_t \)-groups = finite \(p \)-groups

- An \(A_1 \)-group is exactly a minimal non-abelian \(p \)-group.
- Every finite \(p \)-group must be an \(A_t \)-group for some \(t \). Hence the study of finite \(p \)-groups is equivalent to that of \(A_t \)-groups. In particular, if a finite \(p \)-group is of order \(p^n \), then \(t \leq n - 2 \).
- The classification of \(A_t \)-groups for all \(t \) is hopeless. However, the classification of \(A_t \)-groups is possible and useful for small \(t \).

The talk is to introduce some results about finite \(p \)-groups determined by \(A_1 \)-subgroups. These results were obtained by the members of my team, a \(p \)-group team of Shanxi Normal University, and me.
Some results about finite p-groups determined by A_1-subgroups

Qu et al. classified finite p-groups which are a center extension of a cyclic p-group, and elementary abelian p-groups by a minimal non-abelian p-group, respectively. Their results were contained in the following four papers.
Qu et al. classified finite p-groups which are a center extension of a cyclic p-group, and elementary abelian p-groups by a minimal non-abelian p-group, respectively. Their results were contained in the following four papers.

Some results about finite p-groups determined by A_1-subgroups

An, Qu, Xu and Zhang et al. classified finite p-groups with an A_1-subgroup of index p. Their results were contained in the following five papers.
Some results about finite p-groups determined by A_1-subgroups

An, Qu, Xu and Zhang et al. classified finite p-groups with an A_1-subgroup of index p. Their results were contained in the following five papers.

Some results about finite p-groups determined by A_1-subgroups

The A_t-groups with $t \leq 3$ were classified respectively by

Some results about finite p-groups determined by A_1-subgroups

The A_t-groups with $t \leq 3$ were classified respectively by

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

Some results about finite p-groups determined by A_1-subgroups

The A_t-groups with $t \leq 3$ were classified respectively by

Some results about finite p-groups determined by A_1-subgroups

The A_t-groups with $t \leq 3$ were classified respectively by

Although we use the results of classification mentioned above, the classification of A_3-groups is still an enormous work. The classification provide many useful information to the study of p-groups. Some new results are discovered and proved, and some new problems are proposed.
Some results about finite p-groups
determined by A_1-subgroups

The A_t-groups with $t \leq 3$ were classified respectively by

Although we use the results of classification mentioned above, the
classification of A_3-groups is still an enormous work. The
classification provide many useful information to the study of
p-groups. Some new results are discovered and proved, and
some new problems are proposed.

The sketch of the classification of A_3-groups are showed as
follows.
Some results about finite p-groups determined by A_1-subgroups

The A_t-groups with $t \leq 3$ were classified respectively by

Although we use the results of classification mentioned above, the classification of A_3-groups is still an enormous work. The classification provide many useful information to the study of p-groups. Some new results are discovered and proved, and some new problems are proposed.

The sketch of the classification of A_3-groups are showed as follows.
How is A_3-groups classified?

The sketch of the classification of A_3-groups

G is an A_3-groups having an A_1-subgroup of index p

G has an abelian subgroup of index p G has no abelian subgroup of index p

$d(G) = 2$ $d(G) = 3$

6 types ([7]) 20 types ([5])

G has at least two A_1-subgroups of index p

G has a unique A_1-subgroup of index p

$d(G) = 2$ $d(G) = 3$

17 types ([7]) 19 types ([6])

10 types ([4,8])
How is A_3-groups classified?

The sketch of the classification of A_3-groups

G is an A_3-groups having no A_1-subgroup of index p
Facts and Problems

We observed that

- A_2-groups are the p-groups all of whose A_1-subgroups are of index p.

Moreover, Berkovich and Janko in their book “Groups of Prime Power Order Vol. 2” proposed the following Problem [Problem 920]. Classify the p-groups all of whose A_1-subgroups are of order p^3.

Qinhai Zhang
We observed that

- A_2-groups are the p-groups all of whose A_1-subgroups are of index p.
- A_3-groups are the p-groups all of whose A_1-subgroups are of index p or p^2.
Facts and Problems

We observed that

- A_2-groups are the p-groups all of whose A_1-subgroups are of index p.
- A_3-groups are the p-groups all of whose A_1-subgroups are of index p or p^2.

In other words, the A_1-subgroups of A_2-, A_3-groups are of large order. A nature question is:
We observed that

• A_2-groups are the p-groups all of whose A_1-subgroups are of index p.

• A_3-groups are the p-groups all of whose A_1-subgroups are of index p or p^2.

In other words, the A_1-subgroups of A_2-, A_3-groups are of large order. A nature question is:

What can be said about finite p-groups all of whose A_1-subgroups are of smallest order?
Facts and Problems

We observed that

- A_2-groups are the p-groups all of whose A_1-subgroups are of index p.
- A_3-groups are the p-groups all of whose A_1-subgroups are of index p or p^2.

In other words, the A_1-subgroups of A_2-, A_3-groups are of large order. A nature question is:

What can be said about finite p-groups all of whose A_1-subgroups are of smallest order?

Moreover, Berkovich and Janko in their book “Groups of Prime Power Order Vol.2” proposed the following
We observed that

- \(A_2 \)-groups are the \(p \)-groups all of whose \(A_1 \)-subgroups are of index \(p \).

- \(A_3 \)-groups are the \(p \)-groups all of whose \(A_1 \)-subgroups are of index \(p \) or \(p^2 \).

In other words, the \(A_1 \)-subgroups of \(A_2 \)-, \(A_3 \)-groups are of large order. A nature question is:

What can be said about finite \(p \)-groups all of whose \(A_1 \)-subgroups are of smallest order?

Moreover, Berkovich and Janko in their book “Groups of Prime Power Order Vol.2” proposed the following

Problem [Problem 920]. Classify the \(p \)-groups all of whose \(A_1 \)-subgroups are of order \(p^3 \).
Facts and Problems

We observed that

• A_2-groups are the p-groups all of whose A_1-subgroups are of index p.

• A_3-groups are the p-groups all of whose A_1-subgroups are of index p or p^2.

In other words, the A_1-subgroups of A_2-, A_3-groups are of large order. A nature question is:

What can be said about finite p-groups all of whose A_1-subgroups are of smallest order?

Moreover, Berkovich and Janko in their book “Groups of Prime Power Order Vol.2” proposed the following

Problem[Problem 920]. Classify the p-groups all of whose A_1-subgroups are of order p^3.
Facts and Problems

For $p = 2$, the problem was solved by Janko, see [2, Theorem 90.1]. In particular, finite non-abelian 2-group all of whose A_1-subgroups are isomorphic to Q_8 or D_8 were classified by Janko, respectively, see [1, Theorem 10.33] and [2, App.17. Cor.17.3].

For \(p = 2 \), the problem was solved by Janko, see [2, Theorem 90.1]. In particular, finite non-abelian 2-group all of whose \(A_1 \)-subgroups are isomorphic to \(Q_8 \) or \(D_8 \) were classified by Janko, respectively, see [1, Theorem 10.33] and [2, App.17. Cor.17.3].

For odd prime \(p \), the problem was \textbf{open}.
For $p = 2$, the problem was solved by Janko, see [2, Theorem 90.1]. In particular, finite non-abelian 2-group all of whose A_1-subgroups are isomorphic to Q_8 or D_8 were classified by Janko, respectively, see [1, Theorem 10.33] and [2, App.17. Cor.17.3].

For odd prime p, the problem was open.

For convenience, we use $M_p(2, 1)$ to denote the metacyclic p-group of order p^3, and $M_p(1, 1, 1)$ the non-metacyclic p-group of order p^3, respectively.
Facts and Problems

For $p = 2$, the problem was solved by Janko, see [2, Theorem 90.1]. In particular, finite non-abelian 2-group all of whose A_1-subgroups are isomorphic to Q_8 or D_8 were classified by Janko, respectively, see [1, Theorem 10.33] and [2, App.17. Cor.17.3].

For odd prime p, the problem was open.

For convenience, we use $M_p(2, 1)$ to denote the metacyclic p-group of order p^3, and $M_p(1, 1, 1)$ the non-metacyclic p-group of order p^3, respectively.

We give some properties of the p-groups all of whose A_1-subgroups are of order p^3. In particular, we classify the p-groups all of whose A_1-subgroups are isomorphic to $M_p(1, 1, 1)$. For the other cases, The problem is still open.
Facts and Problems

For $p = 2$, the problem was solved by Janko, see [2, Theorem 90.1]. In particular, finite non-abelian 2-group all of whose A_1-subgroups are isomorphic to Q_8 or D_8 were classified by Janko, respectively, see [1, Theorem 10.33] and [2, App.17. Cor.17.3].

For odd prime p, the problem was open.

For convenience, we use $M_p(2,1)$ to denote the metacyclic p-group of order p^3, and $M_p(1,1,1)$ the non-metacyclic p-group of order p^3, respectively.

We give some properties of the p-groups all of whose A_1-subgroups are of order p^3. In particular, we classify the p-groups all of whose A_1-subgroups are isomorphic to $M_p(1,1,1)$. For the other cases, The problem is still open.
The results of classification

Theorem (Q.H. Zhang). Assume G is a finite nonabelian p-group with $d(G) = n$, p an odd prime. Then all A_1-subgroups of G are isomorphic to $M_p(1, 1, 1)$ if and only if G is one of the following groups:

1. nonabelian groups with $\exp(G) = p$;
2. $G = H_p \rtimes \langle a \rangle$, a semidirect product of H_p and $\langle a \rangle$, where $H_p = B_1 \times B_2 \times \cdots \times B_{n-1}$ is an abelian Hughes subgroup of index p, $a^p = 1$. Moreover, $\langle B_i, a \rangle$ is a groups of maximal class with an abelian subgroup of index p and whose union elements are of order p, or an elementary abelian group of order p^2, where $i = 1, 2, \ldots, n - 1$.
The structure of subgroups of p-groups we classified

G is an A_t-group

\[A_{t-1}, \ldots, A_{t-1}, A_0, \ldots, A_0 \]

\[A_{t-2}, \ldots, A_{t-2}, A_0, \ldots, A_0 \]

\[\ldots \]

\[A_1, \ldots, A_1, A_0, \ldots, A_0 \]

\[A_2, \ldots, A_2, A_0, \ldots, A_0 \]

\[A_{t-2}, \ldots, A_{t-2}, A_0, \ldots, A_0 \]

\[A_{t-1}, \ldots, A_{t-1}, A_0, \ldots, A_0 \]

\[A_t, \ldots, A_t, A_0, \ldots, A_0 \]

order

\[p^n \]

\[p^{n-1} \]

\[p^{n-2} \]

\[\ldots \]

\[p^4 \]

\[p^3 \]
The structure of subgroups of p-groups we classified

<table>
<thead>
<tr>
<th>Group Structure</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>G is an A_t-group</td>
<td>p^n</td>
</tr>
<tr>
<td>$A_{t-1}, \cdots, A_{t-1}, A_0, \cdots, A_0$</td>
<td>p^{n-1}</td>
</tr>
<tr>
<td>$A_{t-2}, \cdots, A_{t-2}, A_0, \cdots, A_0$</td>
<td>p^{n-2}</td>
</tr>
<tr>
<td>\ldots \ldots \ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$A_2, \cdots, A_2, A_0, \cdots, A_0$</td>
<td>p^4</td>
</tr>
<tr>
<td>$A_1, \cdots, A_1, A_0, \cdots, A_0$</td>
<td>p^3</td>
</tr>
</tbody>
</table>

All possible types of A_i-subgroups of order p^{n-j} are A_0 and A_{t-j} and G has at least one A_{t-j}-subgroup for $j = 1, 2, \cdots, t-1$, $t \leq n - 2$.
The structure of subgroups of A_t-groups and more

In addition, my colleagues have also classified finite p-groups with the structure of subgroups showed as follows.

G is an A_t-group

$A_{t-1}, \cdots, A_{t-1}, A_0(\leq p)$

$A_{t-2}, \cdots, A_{t-2}, A_0(\leq p)$

$\cdots \cdots \cdots \cdots$

$A_2, \cdots, A_2, A_0(\leq p)$

$A_1, \cdots, A_1, A_0(\leq p)$

A_0, \cdots, A_0, A_0

\begin{align*}
\text{order} & \quad \text{order} \\
p^n & \quad p^{n-1} \\
p^{n-1} & \quad p^{n-2} \\
\cdots & \quad \cdots \\
p^{n-(t-2)} & \quad p^{n-(t-1)} \\
p^{n-t} &
\end{align*}
In addition, my colleagues have also classified finite p-groups with the structure of subgroups showed as follows.

- G is an A_t-group
- $A_{t-1}, \cdots, A_{t-1}, A_0(\leq p)$
- $A_{t-2}, \cdots, A_{t-2}, A_0(\leq p)$
- \cdots
- $A_{2}, \cdots, A_{2}, A_0(\leq p)$
- $A_{1}, \cdots, A_{1}, A_0(\leq p)$
- A_0, \cdots, A_0, A_0
- order
 - p^n
 - p^{n-1}
 - p^{n-2}
 - \cdots
 - $p^{n-(t-2)}$
 - $p^{n-(t-1)}$
 - p^{n-t}

All possible types of A_i-subgroups of order p^{n-j} are A_0 and A_{t-j} and G has at least one A_{t-j}-subgroup for $j = 1, 2, \cdots, t$, $t \leq n - 2$.
The structure of subgroups of ordinary metacyclic p-groups

Qu et al. in [J. Algebra Appl. 13:4(2014)] classified finite p-groups with the structure of subgroups showed as follows.

G is an A_t-group

- A_{t-1}
- A_{t-2}
-
- A_2
- A_1
- A_0

order

- p^n
- p^{n-1}
- p^{n-2}
- ...
- $p^{n-(t-2)}$
- $p^{n-(t-1)}$
- p^{n-t}
The structure of subgroups of ordinary metacyclic p-groups

Qu et al. in [J. Algebra Appl. 13:4(2014)] classified finite p-groups with the structure of subgroups showed as follows.

order

\[
\begin{align*}
G & \text{ is an } A_t\text{-group} \\
A_{t-1} & \quad p^n \\
A_{t-2} & \quad p^{n-1} \\
\cdots & \quad \cdots \\
A_2 & \quad p^{n-(t-2)} \\
A_1 & \quad p^{n-(t-1)} \\
A_0 & \quad p^{n-t}
\end{align*}
\]

It turns out that such p-groups are exactly ordinary metacyclic p-groups.
Qu et al. in [J. Algebra Appl. 13:4(2014)] classified finite p-groups with the structure of subgroups showed as follows.

<table>
<thead>
<tr>
<th>Order</th>
<th>p^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_t-group</td>
<td>p^n</td>
</tr>
<tr>
<td>A_{t-1}</td>
<td>p^{n-1}</td>
</tr>
<tr>
<td>A_{t-2}</td>
<td>p^{n-2}</td>
</tr>
<tr>
<td>.............</td>
<td>...</td>
</tr>
<tr>
<td>A_2</td>
<td>$p^{n-(t-2)}$</td>
</tr>
<tr>
<td>A_1</td>
<td>$p^{n-(t-1)}$</td>
</tr>
<tr>
<td>A_0</td>
<td>p^{n-t}</td>
</tr>
</tbody>
</table>

It turns out that such p-groups are exactly ordinary metacyclic p-groups.

Such p-groups can be regarded as the p-groups “with least possible types of A_i-subgroups”.
The structure of subgroups of ordinary metacyclic p-groups

Qu et al. in [J. Algebra Appl. 13:4 (2014)] classified finite p-groups with the structure of subgroups showed as follows.

<table>
<thead>
<tr>
<th>G is an A_t-group</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{t-1}</td>
<td>p^n</td>
</tr>
<tr>
<td>A_{t-2}</td>
<td>p^{n-1}</td>
</tr>
<tr>
<td>A_{t-3}</td>
<td>p^{n-2}</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>A_2</td>
<td>$p^{n-(t-2)}$</td>
</tr>
<tr>
<td>A_1</td>
<td>$p^{n-(t-1)}$</td>
</tr>
<tr>
<td>A_0</td>
<td>p^{n-t}</td>
</tr>
</tbody>
</table>

It turns out that such p-groups are exactly ordinary metacyclic p-groups.

Such p-groups can be regarded as the p-groups “with least possible types of A_i-subgroups”.
The structure of subgroups of A_t-groups and more

My colleagues Zhang et al. have classified finite p-groups with the structure of subgroups showed as follows.

\begin{align*}
G \text{ is an } A_t\text{-group} \\
A_0, A_1, A_2, \cdots, A_{t-2}, A_{t-1} \\
A_0, A_1, A_2, \cdots, A_{t-2} \\
\ldots \\
A_0, A_1, A_2 \\
A_0, A_1 \\
A_0 \\
\end{align*}

| Order | p^n | p^{n-1} | p^{n-2} | $p^{n-(t-2)}$ | $p^{n-(t-1)}$ | p^{n-t} |
The structure of subgroups of A_t-groups and more

My colleagues Zhang et al. have classified finite p-groups with the structure of subgroups showed as follows.

G is an A_t-group

<table>
<thead>
<tr>
<th>Order</th>
<th>$A_0, A_1, A_2, \cdots, A_{t-2}, A_{t-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$A_0, A_1, A_2, \cdots, A_{t-2}$</td>
</tr>
<tr>
<td></td>
<td>\ldots</td>
</tr>
<tr>
<td></td>
<td>A_0, A_1</td>
</tr>
<tr>
<td></td>
<td>A_0</td>
</tr>
</tbody>
</table>

Such p-groups can be regarded as the p-groups "with most possible types of A_t-subgroups".
From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

Members of p-group team of Shanxi Normal University
Thank you!