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Let G be a connected undirected graph without
loops, with n vertices and k£ edges.

Then the line graph of G is the undirected
graph L(G), where the following holds:

e Each vertex of L(G) corresponds to a cer-
tain edge of G;

e Two vertices of L(G) are connected by an
edge if the corresponding edges in in G
have a common endpoint.



For example, if the graph G is:

2 3 &)
Then the graph L(G) is:
LN
12F23—34—46

A vertex ij in L(G) corresponds to the edge of
G which connects the vertices ¢« and 5 of G.

Notice that the triangle with vertices 12, 23,
13 in L(G) is induced from the triangle with
vertices 1, 2, 3 in G,

while all other cycles of L(G) are not induced
by a cycle of G.



Signed line graph

Let f be a function from the edges of L(G) to
the set {—1,+1}.

L(G)f is a signed line graph for the graph G,
where The edge e of L(G)y is signed by f(e).

A cycle in a signed graph is called balanced if
the product of the values of f along this cycle
IS equal to +1.

A cycle in a signed graph is called non-balanced
if the product of the values of f along this cycle
IS equal to —1.



Signed Coxeter groups

The canonical construction of the standard ge-
ometric representation of a simply laced Cox-
eter group W assoiated to the Coxeter graph I
can be generalized for a signed Coxeter graph
I’f in the following way.

Let (W,S) be a simply laced Coxeter system,
where S = {sq1,s92,...,sn}, let ' be its Coxeter
graph, and let f be a function on edges of I
with values +1, i.e., f ({si,sj}> € {1,—1} when



Let us construct the mapping:

e T he generator s; is mapped to the n xn
matrix w; which differs from the identity
matrix only by the -th row;

e The -th row of the matrix w; has —1 at
the position (3,7);

e It has f ({Si,sj}) in the position (4,7) when
the node s; is connected to the node s;,
i.e., when mij = 3, and it has O in the
position (¢,j) when the nodes s; and s; are
not connected by an edge, i.e., when S and
s; commute.

Thus, we defined the mapping
Rl_,f S — GLn ((C), Rr,f(sz') = Wj.



Example:

Consider for example a signed Coxeter graph of
—1

the symmetric group Sz: s1 — 1 s5 53
—1 1 O 1 O 0
S1 = W1 = O 1 0|,s0—~wry=[1 —1 -1
O 01 O O 1
1 O 0]
S3 > W3 = O 1 0

—1

O
|



The following propositions holds:

The matrices w1, wo,..., wy satisfy the Coxeter
relations of the group W.

The mapping Rr ¢(s;) = w; can be extended
to a group homomorphism W — GLy (C).

In other words, the matrix group

Qr s = (w1,w2,...,wn) IS isomorphic to some
quotient, may be proper, of the simply laced
Coxeter group W.

The standard geometric representation is a par-
ticular case of the representation R r when
the function f maps every edge to 1.



It is natural to inquire how many different (non-
isomorphic) matrix groups 2 can we get this
way from a given Coxeter graph . More pre-
cisely:

Problem. Given an undirected graph [ =
(V,E). To each of 2IEl functions from E to
{1,—1} we associate the matrix group 2r ¢
as it is described above. How many different
groups do we get this way and what can be
said about the structure of these groups?



A partial answer to this question was given in
the paper:

V. Bugaenko, Y. Cherniavsky, T. Nagnibeda,
R. Shwartz,” Weighted Coxeter graphs and gen-
eralized geometric representations of Coxeter
groups’”, Discrete Applied Mathematics 192
(2015)

Let 'y = (V, E, f) be a signed Coxeter graph.
Then the representation R ¢ is faithful if and
only if I‘f IS balanced,

i.e., if and only if every cycle in the graph has
an even number of —1's.

Thus, for all functions f : F — {1,—1} such
that the signed graph I‘f IS balanced, the group
Qr,f is isomorphic to the simply laced Coxeter
group associated to the graph .



It seems to be a difficult problem to distinguish
the cases of non-faithful representations Rr,f.

There is a partial answer to the formulated
above problem:

We describe the group 2  when [ is a line
graph L(G) with certain restriction.
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T he main Theorem

Let ' r be a signed graph with k vertices. As-
sume that ' = L(G), i.e., [ is the line graph of
a certain graph G with n vertices and k edges.

Assume that every cycle of I‘f, which is not
induced from a cycle of G, is not balanced.

1. If every cycle of I‘f, which is induced from a
cycle of G, is balanced, then the group Qr,f 1S
iIsomorphic to a certain semidirect product of
7(n=1)(k=n+1) \with the symmetric group Sp,.

2. If there exists at least one non-balanced
cycle in I'f, which is induced from a cycle of G,
then the group Q,—,f IS isomorphic to a certain
semidirect product of Z*(k—n) with the Coxeter
group Dp,.
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In order to prove the Theorem we construct a
certain matrix o such that

~1
-8t = Xng
where the group X, ~ z(n=DkE=n+1) g

or
Q =y,
ST I n,k

where the group Yj, ;, =~ Z™*=") x Dy,
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The subgroup &, of GL,,_1(C).

A matrix of &, is either a certain (n—1)x(n—1)
permutation matrix,

or is a matrix which has the following structure:

e For a certain 7 € {1,2,....n — 1}, all the
elements of the +-th row equal to —1;

e There exists j € {1,2,...,n—1} such that all
the elements of the j-th column are zeros
except the element in the position 25 which
is —1;

e If we delete the -th row and the j5-th col-
umn we obtain a certain (n —2) x (n — 2)
permutation matrix.

Then &, is a subgroup of GL,,_1(C), and &,
IS isomorphic to the symmetric group Sy,.
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Example:

T he matrices

O 10 1 0O
1 00,10 O 1
O 01 O 10
1 0 O
O 1 O
-1 -1 -1

generate the subgroup &4 of GL3(C) which is
isomorphic to 9.
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The subgroup ©,, of GL,,_1(C).

Let ©,, be a subset of GL,(C), which consists
of all matrices having the following structure:

e A matrix of ¥, has the unique non-zero
entry in each row and each column, which
is1or —1;

e [ he number of —1's is even.

Then ®, is a subgroup of GL,(C), and

D IS isomorphic to the Coxeter group Dy,.

15



The subgroup X, ; of GL;(C).

Let £ and n be natural numbers such that
k>mn-—1. Let X, be the following subset
of GL(C):

P 0
X, = (n—l)x(k—n+1>>}
K {(Q L p41

such that:

Then:
e X,k is a subgroup of GL(C);

e X, IS isomorphic to a semidirect product
of z(n=1)(k=n+1) with the symmetric group
Sn.

16



The subgroup Y, ;, of GL,(C).

Let £ and n be natural numbers such that k£ >
n. Let Y, ; be the following subset of GL(C):

— P Onx(k—n)
= ilo i)}

such that:

P c @n, Q c Z(k—n)Xn

Then:
e Y, 1 is a subgroup of GLy(C);

e Y, i IS isomorphic to a semidirect product
of zn(k=n) with the Coxeter group Dy,.
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The structure of the conjugating matrix «
o= A(I‘f) -D(I‘f), where

The matrices A(T" ;) and D(T" r) depends on the
graph T ¢,

which is the signed line graph of G.

Now, we describe the structures of these ma-
trices
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Let T(G) be a spanning tree of the graph G.

Let Cq1, Cp, ... , Ci_,41 be a certain basis of
the binary cycle space of G.

Let Cj(I") be the cycle of 'y which is induced
from the cycle C;(G).

The vertices of C/(I") correspond to the edges
of C;(G) in G.

Consider two cases:

e Case 1 - Every cycle CJ(I') is a balanced
cycle in Ff;

e Case 2 - There exists at least one non-
balanced cycle Cg(l‘) in I‘f. In this case,
without loss of generality, assume that C7(I")
IS @ non-balanced cycle in I‘f.
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Case 1..
For 1 <i<n, denote by v; the vertices of G.

Assign the numbers 1, 2, ... ,n—1tothen—-1
edges of T(G)
in such a way that a vertex v; is an endpoint
of the edge e;.

Notice that such an indexing of edges of T'(G)
IS unique for a fixed indexing of vertices of G.

et us index the remained £k — n + 1 edges of
G in the following way:

en, Should belong to the cycle C1(G),
en+1 Should belong to Co(G), ...
e should belong to C;_,,4+1(G).

Let ¢; be the vertex of Iy which corresponds
to the edge ¢; of G.
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The matrix A(T ¢)

Let A(I" f) be a kx k matrix defined as follows:
o A(lf);; =1 for every 1 <i < k;

° A(I‘f)z-,j = —f (E,L-,Ej) when the edges ¢; and
e; in G have a common endpoint v;, and
1<i<n—1;

e A("f);; = 0 otherwise.

The matrix A(I"¢) is an invertible matrix with
determinant 1.
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The matrix D(I"¢)

Let D(I"f) be a k x k diagonal matrix defined
as follows:

o For n <1<k, D(Ff)w =1;

e For1<i<n—1, D(f);; = (—1)%, where
(01,02,...,0,_1) is a solution for the fol-
lowing system of the linear equations over
Fo:

22



e di+d;= f({éi,éj}> when the endpoints of
e; in G are v; and Vi,

o d;+d; =1+ f({ei,ej}) when vy, is the
common endpoint of ¢; and e; in G.

where:

s ={ g /Nl

23



Case 2:

For 1 < < n, denote by v; the vertices of GG
(like in case 1).

Assign the numbers 1, 2, ... , n to the n edges
of T(G) U C1(G)

in such a way that a vertex v; is an endpoint
of the edge e;.

Let us index the remained k — n edges of GG in
the following way:

en+1 Should belong to the cycle C(G),
en+2 Should belong to C3(G), ... ,
er should belong to Cj;_,4+1(G).

Similarly to Case 1, let 4; be the vertex of I';
which corresponds to the edge e; of G.
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Let A(I ;) be a kx k matrix defined as follows:

e A(l"¢);; =1 for every 1 <i < k;

° A(I‘f)z-,j = —f (zi,ej) when the edges e; and
e; in G have a common endpoint v;, and
1 <1< nm;

e A(I"¢); ; = 0 otherwise.

In Case 2, a = A(l"y).
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Example 1:

Let G be the following graph:
2
TN
3 1
e3
AN
4
Then, T(G) as follows:
2
PN
3 1
AN

4
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I‘f, where

o f({f1,42})
.f({£37£4})

(4+1);

f ({£2,44})
ef({€37€5})

f({€1,44})
f({44,¢5})

o f({2,43}) = f({£1,45}) = (—1).

1%,

(-)

CONNS
(+) (+)
ly (-)
(+) (+)
CONN
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Thus:

o f({f1,£2}) =0, since f ({£1,42}) =1,

o f({f2,£3}) =1, since f({f2,43}) = —1.

T herefore the following equations holds in Fo:

e di +dp = f({{1,42}) = 0;

o dy+d3 = f({f2,43}) =1

where the solutions are:

® (01702703) — (_17_17 1)1

® (01702703) — (17 17 _1)
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Thus:

— —~
OO0 O
OO0 O
OO HOO
01__000
1__OOOO
N __~

or

— —
OO0 OO
OO0 HO
OO1__OO
O— 00O
—~ OO0 0O
N -~

I

Ve

S

L

)

QA

29



Qrf IS generated by:

(-1 1 0 1 —1)

1 00 O

O

0O 010 O
0 00 1
\oooo

0

1)
0 0 O)

-1 1 0

w1l —

(1 0

—1

1

o O
O

— O

o O

o O

001)

\0 O

wo —

— —~
OO +HO
OO0+ = O
OO_l__OO
011__00
— O O O O
N— ___~

w3 —
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— —~~
QOO H
OOO1__O
OO0 -~ O
OO — O
—H OO O
N— ___~

wyq =

g —
oNONONG) |
OO0 oOo+HH
oNeoR_NeR_
oR_NoNoN®
10001__
~— __

To)

3
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(01 0 0 O)

1 00 0O

(A(Tp) w1 - (ATt =

0 0 0)

O

—~
o oo
o oA 0O

_OOO
O_OO

o OoOoOo
—

(A(Tp) - wa - (AT )t =

— —~~
OO0 O
OO0 O
OO1__OO
O+ OO
— O+ OO
N— ___~

i

|

VN

g

L

N’

<

N’

™

3

VY

S

L

N’

<

N’
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— —~~
O OO OoH
OO o0
_0010
O+ 0O 0O

OO1__10

(
\

(A(T§) -wq - (AT )t =

(-1 -1 1 0 0)

O 0 O

1
0
O

O

OO0
1 O

1
0
\—2 -11 0 1)

o O

(AT ) - ws - (AT )~ =
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Now, conjugating by (D(I ;):

(D(Ty) - (AT ) - w1 - (AT~ (D(rp) !

(0 1 0 0 0)
10000
00100
00010
\0 0 0 0 1)

(D(Ty) - (AT ) - wa - (AT )™ (D)7t

(1 0 0)

O O
O 0
O O

\0 1)

(D(My) - (AT ) - w3 - (AT~ (D(rp)~ !

OoOoOr oo
©OoOoo+rOo

O OO

(1 0 0 0 0)
0O 1 0 00
-1 -1 -1 00
0 0 0 10

\0 0 0 0 1)
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(D(Ty) - (AT ) - wa - (AT~ (DT )™t

or

(D(Ty) - (AT ) - wa - (AT )™ (D)t

(o

0
1
1

\O

oNoNoN )

0

1
O
O
O

1

O OO

|
© ., oo+

0

O OO

O O OO

0)
O
O
O

1)

0)
O
O
O

1)
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(D(Ty) - (A(Tf) - ws - (AT~ (D(rp)~ !

(-1 —1 —1 0 0\
0O 1 0 00
0O 0 1 00
0O 0 0 10

Kz 1 1 0 1)

or

(D(My) - (A(Tf) - ws - (AT~ (D)t
(-1 -1 -1 0 0)
0 1 0 0O
0 O 1 O
O O 0] 0O
K—z —1 -1 1

O OO0OOo
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The two different choices of (D(I";), gives dif-
ferent matrices for

(DM ) - (AT ) - wa - (AT (D(Ty)~ T and
for

(D(M4) - (AT ) - ws - (AT )~ (D(r )T,
where the difference is in the last two rows of
the matrices, such:

If in the first choice of (D(I" ), the 2x3 downer
left sub-matrix is @, then

in the second choice of (D(I" ¢), the 2x3 downer
left sub-matrix is —Q.
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Example 2:

Let G be the following graph:
2
PN
3—=3 1
€4
4
Then (' is:

2
2N
3——1

and T(G) is:
2
N
3 1
N

4
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Then, T(G) N Cq as follows:
2
N
3——1
AN

4
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I‘f, where

o f({41,42})
f ({44,45})

(4+1);

/ ({627 63})
J ({637 65})

/ ({63764})
f({£1,45})

o f({2,44}) = f({£1,43}) = (—1).

1%,

(-)

),
(+) (-)
(3 (+)
(+) (+)
CONS
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T herefore:

- —_ O
_OO _1
OO1__10
— O+ OO
011__00
11__OOO
N -~

I

VN

S

L

N’

<
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Qrf IS generated by:

(-1 1 -1 0 1)

O O O

1

O

1
\00001/

O O O

w1l —

(1 0 0 0 O)

O
O
O

—1

-1 1

1

0
0
\oooo

O
1

1
O

O
O

1)

wo —

)

o O
o O

o O

O

— O

-1 11

-1 1

0

1
\00001/

O O O

w3 —

42



(1 0 0 0 O)

o O

o O

o -

— O

o O

1)

O -1 1 -1 1

\oooo

wyq =

o OoOo0o0Oo

oo
ool e
O+ OO
— O O O

\1011—1)

wy —

43



(0 1 0 0 O)
10000

00010
\0 0 0 0 1)
(1 0 0 0 O)
00100

A(M)wi- ATy t=]001 0 0

([0 0 —1 0 0)

00010
\00001)

O 0 O

1

0

1
\00001}

O O O

A(Mf) - wa- A(Cp)" =01 000

A(Mf) w3 - A(Mp) " '=|-10 0 00
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(1 0 0 0 O)
01000

00100
\0 0 0 0 1)
(0 0 0 —1 0)

A(Cf) wa- A(Ty)" =100 0 1 0

1 0 0 O

O
O

O O

-1 00 0 O

\1

O

11)

O O

AT ) - ws - A(T )71
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