On primitivity of group algebras of non-noetherian groups

Tsunekazu Nishinaka*
(University of Hyogo)

Groups St Andrews 2017 in Birmingham
5—13 August, 2017
University of Birmingham, Edgbaston Birmingham UK

*Partially supported by KAKEN:
Grants-in-Aid for Scientific Research under grant no. 17K05207
1. **Primitive group rings**

Definition (a primitive ring)

Let R be a ring with the identity element,

R is right primitive $\iff \exists M_R$ a faithful irreducible right R-module

$\iff \exists \rho$: a maximal right ideal of R which contains no non-trivial ideals

- R: commutative primitive $\implies R$ is a field.
- R is simple $\implies R$ is primitive.
- R is artinian simple $\implies R \cong M_n(D) \cong \text{End}_D(V), \; \text{dim}_D(V) < \infty$.

$R = \text{End}_D(V)$

$\text{dim}_D(V) = \infty$ \implies R is a primitive ring.
1. Primitive group rings

Definition (a primitive ring)

Let R be a ring with the identity element,

\[R \text{ is right primitive } \iff \exists M_R \text{ a faithful irreducible right } R\text{-module} \]

\[\iff \exists \rho: \text{ a maximal right ideal of } R \text{ which contains no non-trivial ideals} \]

- R: commutative primitive \Rightarrow R is a field.
- R is simple \Rightarrow R is primitive.
- R is artinian simple \Rightarrow $R \cong M_n(D) \cong \text{End}_D(V), \quad \text{dim}_D(V) < \infty.$

$R = \text{End}_D(V) \quad \text{dim}_D(V) = \infty \quad R$ is a primitive ring.
1. Primitive group rings

Definition (a primitive ring)

Let R be a ring with the identity element,

R is right primitive $\iff \exists M_R$ a faithful irreducible right R-module $\iff \exists \rho$: a maximal right ideal of R which contains no non-trivial ideals

- R: commutative primitive \Rightarrow R is a field.
- R is simple \Rightarrow R is primitive.
- R is artinian simple \Rightarrow $R \cong M_n(D) \cong End_D(V)$, $dim_D(V) < \infty$.

$R = \text{End}_D(V)$ \quad \text{dim}_D(V) = \infty \quad R$ is a primitive ring.
1. Primitive group rings

Definition (a primitive ring)

Let R be a ring with the identity element,

R is right primitive $\iff \exists M_R$ a faithful irreducible right R-module

$\iff \exists \rho$: a maximal right ideal of R which contains no non-trivial ideals

- R: commutative primitive $\Rightarrow R$ is a field.
- R is simple $\Rightarrow R$ is primitive.
- R is artinian simple $\Rightarrow R \cong M_n(D) \cong \text{End}_D(V)$, $\dim_D(V) < \infty$

$R = \text{End}_D(V)$ $\quad \overset{\dim_D(V) = \infty}{\longrightarrow} \quad R$ is a primitive ring.
1. Primitive group rings

Definition (a primitive ring)

Let R be a ring with the identity element,

R is right primitive $\iff \exists M_R$ a faithful irreducible right R-module

$\iff \exists \rho$: a maximal right ideal of R which contains no non-trivial ideals

$\blacktriangleright R$: commutative primitive $\Rightarrow R$ is a field.

$\blacktriangleright R$ is simple $\Rightarrow R$ is primitive.

$\blacktriangleright R$ is artinian simple $\Rightarrow R \simeq M_n(D) \simeq \text{End}_D(V), \ dim_D(V) < \infty.$

\[R = \text{End}_D(V) \quad \text{dim}_D(V) = \infty \quad R \text{ is a primitive ring.} \]
M: a faithful right R-module:

\[r \in R; \quad Mr=0 \Rightarrow r=0 \]

M: an irreducible (simple) right R-module:

\[N \leq M \Rightarrow N=0 \text{ or } N=M \]
1. Primitive group rings

Definition (a primitive ring)

Let R be a ring with the identity element,

- R is right primitive $\iff \exists M_R$ a faithful irreducible right R-module
- $\iff \exists \rho$: a maximal right ideal of R which contains no non-trivial ideals

- R: commutative primitive $\Rightarrow R$ is a field.
- R is simple $\Rightarrow R$ is primitive.
- R is artinian simple $\Rightarrow R \cong M_n(D) \cong \text{End}_D(V), \dim_D(V) < \infty$.

\[
R = \text{End}_D(V) \quad \text{dim}_D(V) = \infty \quad R \text{ is a primitive ring.}
\]
1. Primitive group rings

Definition (a primitive ring)

Let R be a ring with the identity element,

R is right primitive \iff $\exists M_R$ a faithful irreducible right R-module

\iff $\exists \rho$: a maximal right ideal of R which contains no non-trivial ideals

- R: commutative primitive \Rightarrow R is a field.

- R is simple \Rightarrow R is primitive.

- R is artinian simple \Rightarrow $R \cong M_n(D) \cong \text{End}_D(V), \quad \dim_D(V) < \infty$.

$$R = \text{End}_D(V) \quad \overset{\text{dim}_D(V) = \infty}{\longrightarrow} \quad R \text{ is a primitive ring.}$$
1. Primitive group rings

Definition (a primitive ring)

Let R be a ring with the identity element,

R is right primitive $\iff \exists M_R$ a faithful irreducible right R-module

$\iff \exists \rho$: a maximal right ideal of R which contains no non-trivial ideals

- R: commutative primitive $\Rightarrow R$ is a field.

- R is simple $\Rightarrow R$ is primitive.

- R is artinian simple $\Rightarrow R \cong M_n(D) \cong End_D(V), \ dim_D(V) < \infty.$

$$R = End_D(V) \quad \text{dim}_D(V) = \infty \quad \Rightarrow \quad R \text{ is a primitive ring.}$$
1. Primitive group rings

Definition (a primitive ring)

Let R be a ring with the identity element,

R is right primitive $\iff \exists M_R$ a faithful irreducible right R-module

$\iff \exists \rho$: a maximal right ideal of R which contains no non-trivial ideals

$\Rightarrow R$: commutative primitive $\Rightarrow R$ is a field.

$\Rightarrow R$ is simple $\Rightarrow R$ is primitive.

$\Rightarrow R$ is artinian simple $\Rightarrow R \cong M_n(D) \cong End_D(V), \ dim_D(V) < \infty$.

$R = End_D(V)$

$dim_D(V) = \infty$ $\Rightarrow R$ is a primitive ring.
1. Primitive group rings

Definition (a primitive ring)

Let \(R \) be a ring with the identity element,

\[
R \text{ is right primitive } \iff \exists M_R \text{ a faithful irreducible right } R\text{-module} \\
\iff \exists \rho: \text{a maximal right ideal of } R \text{ which contains no non-trivial ideals}
\]

\(R \): commutative primitive \implies R \text{ is a field.}

\(R \) is simple \implies R \text{ is primitive.}

\(R \) is artinian simple \implies R \cong M_n(D) \cong \text{End}_D(V), \; \dim_D(V) < \infty.

\[
R = \text{End}_D(V) \quad \text{dim}_D(V) = \infty \quad \quad \quad R \text{ is a primitive ring.}
\]
For the case of noetherian groups

Definition (Noetherian groups)

A group G is noetherian provided any subgroup of G is finitely generated.

- $G \neq 1$: finite or abelian $\Rightarrow KG$ is never primitive.

KG is the group algebra of a group G over a field K.

- $G \neq 1$: finite or abelian $\Rightarrow KG$ is never primitive.

For the case of noetherian groups

- G is polycyclic by finite $\Rightarrow G$ is noetherian.
- G is noetherian $\Rightarrow G$ is often polycyclic by finite; it is not easy to find noetherian but not polycyclic by finite.

- G is a polycyclic by finite group

KG: primitive $\Leftrightarrow \Delta(G)=1$, K is not algebraic over a finite field

(1979, Domanov, Farkas-Passman and Roseblade)
KG is the group algebra of a group G over a field K.

- $G \neq 1$: finite or abelian \Rightarrow KG is never primitive.

For the case of noetherian groups

Definition (Noetherian groups)

A group G is noetherian provided any subgroup of G is finitely generated.

- G is polycyclic by finite \Rightarrow G is noetherian.
- G is noetherian \Rightarrow G is often polycyclic by finite; it is not easy to find noetherian but not polycyclic by finite.

- G is a polycyclic by finite group

KG: primitive $\Leftrightarrow \Delta(G)=1$, K is not algebraic over a finite field

(1979, Domanov, Farkas-Passman and Roseblade)
For the case of noetherian groups

Definition (Noetherian groups)

A group G is noetherian provided any subgroup of G is finitely generated.

- $G \neq 1$: finite or abelian $\implies KG$ is never primitive.

For the case of noetherian groups

- G is polycyclic by finite $\implies G$ is noetherian.
- G is noetherian $\implies G$ is often polycyclic by finite; it is not easy to find noetherian but not polycyclic by finite.

- G is a polycyclic by finite group

KG: primitive $\iff \Delta(G)=1$, K is not algebraic over a finite field

(1979, Domanov, Farkas-Passman and Roseblade)
\(\mathcal{KG} \) is the group algebra of a group \(G \) over a field \(K \).

- \(G \neq 1 \): finite or abelian \(\Rightarrow \) \(\mathcal{KG} \) is never primitive.

For the case of noetherian groups

Definition (Noetherian groups)

A group \(G \) is noetherian provided any subgroup of \(G \) is finitely generated.

- \(G \) is polycyclic by finite \(\Rightarrow \) \(G \) is noetherian.
- \(G \) is noetherian \(\Rightarrow \) \(G \) is often polycyclic by finite; it is not easy
to find noetherian but not polycyclic by finite.

- \(G \) is a polycyclic by finite group

\(\mathcal{KG} \) is primitive \(\Leftrightarrow \) \(\Delta(G)=1 \), \(K \) is not algebraic over a finite field

(1979, Domanov, Farkas-Passman and Roseblade)
KG is the group algebra of a group G over a field K.

- $G \neq 1$: finite or abelian $\Rightarrow KG$ is never primitive.

For the case of noetherian groups

Definition (Noetherian groups)

A group G is noetherian provided any subgroup of G is finitely generated.

- G is polycyclic by finite $\Rightarrow G$ is noetherian.

 - G is noetherian $\Rightarrow G$ is often polycyclic by finite; it is not easy to find noetherian but not polycyclic by finite.

- G is a polycyclic by finite group

 KG: primitive $\iff \Delta(G)=1$, K is not algebraic over a finite field

 (1979, Domanov, Farkas-Passman and Roseblade)
G is polycyclic $\iff G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_n = 1$, G_i / G_{i+1}: cyclic
\(KG \) is the group algebra of a group \(G \) over a field \(K \).

- \(G \neq 1 \): finite or abelian \(\Rightarrow KG \) is never primitive.

For the case of noetherian groups

Definition (Noetherian groups)

A group \(G \) is noetherian provided any subgroup of \(G \) is finitely generated.

- \(G \) is polycyclic by finite \(\Rightarrow G \) is noetherian.
 - \(G \) is noetherian \(\Rightarrow G \) is often polycyclic by finite; it is not easy to find noetherian but not polycyclic by finite.

- \(G \) is a polycyclic by finite group

\[KG: \text{primitive } \Leftrightarrow \Delta(G)=1, \text{ } K \text{ is not algebraic over a finite field} \]

(1979, Domanov, Farkas-Passman and Roseblade)
For the case of noetherian groups

Definition (Noetherian groups)

A group \(G \) is noetherian provided any subgroup of \(G \) is finitely generated.

\[G \neq 1 \text{: finite or abelian } \Rightarrow KG \text{ is never primitive.} \]

\[KG \text{ is the group algebra of a group } G \text{ over a field } K. \]

\[G \neq 1 \text{: finite or abelian } \Rightarrow KG \text{ is never primitive.} \]

\[KG \text{ is the group algebra of a group } G \text{ over a field } K. \]

\[\Rightarrow \Delta(G) = 1, K \text{ is not algebraic over a finite field (1979, Domanov, Farkas-Passman and Roseblade)} \]

\[G \text{ is polycyclic by finite } \Rightarrow G \text{ is noetherian.} \]

\[G \text{ is noetherian } \Rightarrow G \text{ is often polycyclic by finite; it is not easy to find noetherian but not polycyclic by finite.} \]
KG is the group algebra of a group G over a field K.

- $G \neq 1$: finite or abelian \Rightarrow KG is never primitive.

For the case of noetherian groups

Definition (Noetherian groups)

A group G is noetherian provided any subgroup of G is finitely generated.

- G is polycyclic by finite \Rightarrow G is noetherian.
- G is noetherian \Rightarrow G is often polycyclic by finite; it is not easy to finid noetherian but not polycyclic by finite.

- G is a polycyclic by finite group

KG: primitive $\Leftrightarrow \Delta(G)=1$, K is not algebraic over a finite field

(1979, Domanov, Farkas-Passman and Roseblade)
KG is the group algebra of a group G over a field K.

- $G \neq 1$: finite or abelian $\implies KG$ is never primitive.

For the case of noetherian groups

Definition (Noetherian groups)

A group G is noetherian provided any subgroup of G is finitely generated.

- G is polycyclic by finite $\implies G$ is noetherian.
- G is noetherian $\implies G$ is often polycyclic by finite; it is not easy to find noetherian but not polycyclic by finite.

- G is a polycyclic by finite group

KG: primitive $\iff \Delta(G)=1$, K is not algebraic over a finite field

(1979, Domanov, Farkas-Passman and Roseblade)
For the case of noetherian groups

Definition (Noetherian groups)

A group G is noetherian provided any subgroup of G is finitely generated.

\triangleright $G \neq 1$: finite or abelian $\Rightarrow KG$ is never primitive.

\triangleright G is polycyclic by finite $\Rightarrow G$ is noetherian.

\triangleright G is noetherian $\Rightarrow G$ is often polycyclic by finite; it is not easy
to finid noetherian but not polycyclic by finite.

\triangleright G is a polycyclic by finite group

KG: primitive $\iff \Delta(G)=1$, K is not algebraic over a finite field

(1979, Domanov, Farkas-Passman and Roseblade)
Δ(G): the finite conjugate center of G; $Δ(G)=\{g \in G \mid [G:C_G(g)]<\infty\}$
KG is the group algebra of a group G over a field K.

- $G \neq 1$: finite or abelian $\Rightarrow KG$ is never primitive.

For the case of noetherian groups

Definition (Noetherian groups)

A group G is noetherian provided any subgroup of G is finitely generated.

- G is polycyclic by finite $\Rightarrow G$ is noetherian.
- G is noetherian $\Rightarrow G$ is often polycyclic by finite; it is not easy to find noetherian but not polycyclic by finite.

- G is a polycyclic by finite group

KG: primitive $\iff \Delta(G)=1$, K is not algebraic over a finite field

(1979, Domanov, Farkas-Passman and Roseblade)
For the case of non-noetherian groups

If G is one of the following types of groups, then KG is primitive for any field K:

- G is a free product of non-trivial groups (except $G=\mathbb{Z}_2*\mathbb{Z}_2$) \rightarrow(1973, Formanek)

- G is an amalgamated free product satisfying certain conditions \rightarrow(1989, Balogun)

- G is an ascending HNN extension of a free group \rightarrow(2007, N)

- G is a locally free group \rightarrow(2010, N)
For the case of non-noetherian groups

If G is one of the following types of groups, then KG is primitive for any field K:

- G is a free product of non-trivial groups (except $G = \mathbb{Z}_2 \ast \mathbb{Z}_2$) → (1973, Formanek)

- G is an amalgamated free product satisfying certain conditions → (1989, Balogun)

- G is an ascending HNN extension of a free group → (2007, N)

- G is a locally free group → (2010, N)
For the case of non-noetherian groups

If G is one of the following types of groups, then KG is primitive for any field K:

- G is a free product of non-trivial groups (except $G=\mathbb{Z}_2*\mathbb{Z}_2$) →(1973, Formanek)

- G is an amalgamated free product satisfying certain conditions →(1989, Balogun)

- G is an ascending HNN extension of a free group →(2007, N)

- G is a locally free group →(2010, N)
For the case of non-noetherian groups

If G is one of the following types of groups, then KG is primitive for any field K:

- G is a free product of non-trivial groups (except $G={Z_2}^*{Z_2}$) $\Rightarrow (1973, \text{Formanek})$

- G is an amalgamated free product satisfying certain conditions $\Rightarrow (1989, \text{Balogun})$

- G is an ascending HNN extension of a free group $\Rightarrow (2007, \text{N})$

- G is a locally free group $\Rightarrow (2010, \text{N})$
For the case of non-noetherian groups

If G is one of the following types of groups, then KG is primitive for any field K:

- G is a free product of non-trivial groups (except $G = \mathbb{Z}_2 \ast \mathbb{Z}_2$) → (1973, Formanek)

- G is an amalgamated free product satisfying certain conditions → (1989, Balogun)

- G is an ascending HNN extension of a free group → (2007, N)

- G is a locally free group → (2010, N)
For the case of non-noetherian groups

If G is one of the following types of groups, then KG is primitive for any field K:

- G is a free product of non-trivial groups (except $G=\mathbb{Z}_2 \ast \mathbb{Z}_2$)
 \rightarrow (1973, \text{Formanek})

- G is an amalgamated free product satisfying certain conditions
 \rightarrow (1989, \text{Balogun})

- G is an ascending HNN extension of a free group
 \rightarrow (2007, \text{N})

- G is a locally free group
 \rightarrow (2010, \text{N})
2. Main Results

We would like to determine the primitivity of group algebras of non-noetherian groups as generally as possible. To do this, we consider a condition satisfied by many class of groups. We first explain the notations needed.

Mutually reduced sets

Let G be a group and M a subset of G.

We denote by \tilde{M} the symmetric closure of M; $\tilde{M} = M \cup \{x^{-1} | x \in M\}$, and by M^x, the set $\{x^{-1}fx | f \in M\}$, where $x \in G$.

For non-empty subsets M_1, M_2, \ldots, M_n of G, consisting of elements $\neq 1$, we say that M_1, M_2, \ldots, M_n are mutually reduced in G, if for each finite number of elements $g_1, g_2, \ldots, g_m \in \bigcup_{i=1}^{n} \tilde{M}_i$,

$$g_1g_2\cdots g_m = 1 \Rightarrow \exists i, j \text{ s.t. } g_i, g_{i+1} \in \tilde{M}_j.$$
2. Main Results

We would like to determine the primitivity of group algebras of non-noetherian groups as generally as possible. To do this, we consider a condition satisfied by many class of groups. We first explain the notations needed.

Mutually reduced sets

Let G be a group and M a subset of G.

We denote by \tilde{M} the symmetric closure of M; $\tilde{M} = M \cup \{x^{-1} \mid x \in M\}$, and by M^x, the set $\{x^{-1}fx \mid f \in M\}$, where $x \in G$.

For non-empty subsets M_1, M_2, \ldots, M_n of G, consisting of elements $\neq 1$, we say that M_1, M_2, \ldots, M_n are mutually reduced in G, if for each finite number of elements $g_1, g_2, \ldots, g_m \in \bigcup_{i=1}^{n} \tilde{M}_i$,

$$g_1g_2\cdots g_m = 1 \Rightarrow \exists i, j \text{ s.t. } g_i, g_{i+1} \in \tilde{M}_j.$$
2. Main Results

We would like to determine the primitivity of group algebras of non-noetherian groups as generally as possible. To do this, we consider a condition satisfied by many class of groups. We first explain the notations needed.

Mutually reduced sets

Let G be a group and M a subset of G.

We denote by $	ilde{M}$ the symmetric closure of M: $\tilde{M} = M \cup \{x^{-1} \mid x \in M\}$, and by M^x, the set $\{x^{-1}fx \mid f \in M\}$, where $x \in G$.

For non-empty subsets M_1, M_2, \ldots, M_n of G, consisting of elements $\neq 1$, we say that M_1, M_2, \ldots, M_n are mutually reduced in G, if for each finite number of elements $g_1, g_2, \ldots, g_m \in \bigcup_{i=1}^n \tilde{M}_i$,

$$g_1g_2 \cdots g_m = 1 \Rightarrow \exists i, j \text{ s.t. } g_i, g_{i+1} \in \tilde{M}_j.$$
2. Main Results

Mutually reduced sets

Let G be a group and M a subset of G.

We denote by \tilde{M} the symmetric closure of M; $\tilde{M} = M \cup \{x^{-1} | x \in M\}$, and by M^x, the set $\{x^{-1}fx | f \in M\}$, where $x \in G$.

For non-empty subsets M_1, M_2, \ldots, M_n of G, consisting of elements $\neq 1$, we say that M_1, M_2, \ldots, M_n are mutually reduced in G, if for each finite number of elements $g_1, g_2, \ldots, g_m \in \bigcup_{i=1}^{n} \tilde{M}_i$,

$$g_1g_2\cdots g_m = 1 \implies \exists i, j \text{ s.t. } g_i, g_{i+1} \in \tilde{M}_j.$$
2. Main Results

We would like to determine the primitivity of group algebras of non-noetherian groups as generally as possible. To do this, we consider a condition satisfied by many class of groups. We first explain the notations needed.

Mutually reduced sets

Let G be a group and M a subset of G.

We denote by \tilde{M} the symmetric closure of M; $\tilde{M} = M \cup \{x^{-1} | x \in M\}$, and by M^x, the set $\{x^{-1}fx | f \in M\}$, where $x \in G$.

For non-empty subsets M_1, M_2, \ldots, M_n of G, consisting of elements $\neq 1$, we say that M_1, M_2, \ldots, M_n are mutually reduced in G, if for each finite number of elements $g_1, g_2, \ldots, g_m \in \bigcup_{i=1}^{n} \tilde{M}_i$,

$$g_1g_2\cdots g_m = 1 \Rightarrow \exists i, j \text{ s.t. } g_i, g_{i+1} \in \tilde{M}_j.$$
2. Main Results

We would like to determine the primitivity of group algebras of non-noetherian groups as generally as possible. To do this, we consider a condition satisfied by many class of groups. We first explain the notations needed.

Mutually reduced sets

Let G be a group and M a subset of G.

We denote by \widetilde{M} the symmetric closure of M; $\widetilde{M} = M \cup \{x^{-1} | x \in M\}$, and by M^x, the set $\{x^{-1}fx | f \in M\}$, where $x \in G$.

For non-empty subsets M_1, M_2, \ldots, M_n of G, consisting of elements $\neq 1$, we say that M_1, M_2, \ldots, M_n are mutually reduced in G, if for each finite number of elements $g_1, g_2, \ldots, g_m \in \bigcup_{i=1}^{n} \widetilde{M}_i$,

$$g_1g_2\cdots g_m = 1 \Rightarrow \exists i, j \text{ s.t. } g_i, g_{i+1} \in \widetilde{M}_j.$$
We here consider the following condition:

\[
(*) \quad \begin{cases}
\text{For any non-empty subsets } M \text{ of } G \text{ consisting of finite number of elements } \neq 1, \\
\text{there exist } x_1, x_2, x_3 \in G \text{ such that } M^{x_1}, M^{x_2}, M^{x_3} \text{ are mutually reduced.}
\end{cases}
\]

Theorem 1 ([Nishinaka and Alexander, 2017])

If G is a countable infinite group and G satisfies $(*)$, then KG is primitive for any K.

This is true even if the cardinality of G is general provided G has a free subgroup whose cardinality is same as that of G itself.
We here consider the following condition:

\[(*) \]

For any non-empty subsets \(M \) of \(G \) consisting of finite number of elements \(\neq 1 \),
there exist \(x_1, x_2, x_3 \in G \) such that \(M^{x_1}, M^{x_2}, M^{x_3} \) are mutually reduced.

Theorem 1 ([Nishinaka and Alexander, 2017])

If \(G \) is a countable infinite group and \(G \) satisfies \((*)\),
then \(KG \) is primitive for any \(K \).

This is true even if the cardinality of \(G \) is general
provided \(G \) has a free subgroup whose cardinality
is same as that of \(G \) itself.
We here consider the following condition:

\begin{equation}
(*) \quad \text{For any non-empty subsets } M \text{ of } G \text{ consisting of finite number of elements } \neq 1, \text{ there exist } x_1, x_2, x_3 \in G \text{ such that } M^{x_1}, M^{x_2}, M^{x_3} \text{ are mutually reduced.}
\end{equation}

Theorem 1 ([Nishinaka and Alexander, 2017])

If G is a countable infinite group and G satisfies $(*)$, then KG is primitive for any K.

This is true even if the cardinality of G is general provided G has a free subgroup whose cardinality is same as that of G itself.
Most infinite groups are non-Noetherian except for polycyclic by finite groups, and they satisfy (*).

For example:

- a free group,
- a free product,
- a locally free group,
- an amalgamated free product,
- an HNN-extension,
- a one relator group with torsion ...
- a non-elementary hyperbolic group

Most infinite groups are non-Noetherian except for polycyclic by finite groups, and they satisfy (*).

For example:

a free group, a free product,

a locally free group,

an amalgamated free product,

an HNN-extension,

a one relator group with torsion ... a non-elementary hyperbolic group

Most infinite groups are non-Noetherian except for polycyclic by finite groups, and they satisfy (*).

For example:

- a free group,
- a free product,
- a locally free group,
- an amalgamated free product,
- an HNN-extension,
- a one relator group with torsion ...
- a non-elementary hyperbolic group

Most infinite groups are non-Noetherian except for polycyclic by finite groups, and they satisfy (*).

For example:

a free group, a free product,

a locally free group,

an amalgamated free product,

an HNN-extension,

a one relator group with torsion ...

a non-elementary hyperbolic group
Most infinite groups are non-Noetherian except for polycyclic by finite groups, and they satisfy (*).

For example:

- a free group,
- a free product,
- a locally free group,
- an amalgamated free product,
- an HNN-extension,
- a one relator group with torsion ...
- a non-elementary hyperbolic group

3. SR-graphs

We consider a Two-edge coloured graph which is simple graph (an undirected graph without loops or multi-edges).

$$V = \{v_1, v_2, ..., v_n\} \quad E = \{e_1, e_2, ..., e_m\} \quad F = \{f_1, f_2, ..., f_l\}$$

An SR-graph $S = (V, E, F)$ is an SR-graph if every component of $\mathcal{G} = (V, E)$ is a complete graph.

$I(\mathcal{G}) = \{v_3, v_6\}$
3. SR-graphs

We consider a Two-edge coloured graph which is simple graph (an undirected graph without loops or multi-edges).

\[V = \{v_1, v_2, ..., v_n \} \quad E = \{e_1, e_2, ..., e_m \} \quad F = \{f_1, f_2, ..., f_l \} \]

An SR-graph \(S = (V, E, F) \) is an SR-graph if every component of \(G = (V, E) \) is a complete graph.

\[I(\mathcal{G}) = \{v_3, v_6\} \]
3. SR-graphs

We consider a Two-edge coloured graph which is simple graph (an undirected graph without loops or multi-edges).

\[V = \{v_1, v_2, ..., v_n \} \quad E = \{e_1, e_2, ..., e_m \} \quad F = \{f_1, f_2, ..., f_l \} \]

An SR-graph \(S = (V, E, F) \) is an SR-graph if every component of \(G = (V,E) \) is a complete graph.

\[I(\mathcal{G}) = \{v_3, v_6\} \]
3. SR-graphs

We consider a Two-edge coloured graph which is simple graph (an undirected graph without loops or multi-edges).

\[V = \{v_1, v_2, ..., v_n \} \quad E = \{e_1, e_2, ..., e_m \} \quad F = \{f_1, f_2, ..., f_l \} \]

An SR-graph \(S = (V, E, F) \) is an SR-graph if every component of \(\mathcal{G} = (V,E) \) is a complete graph.

\[I(\mathcal{G}) = \{v_3, v_6\} \]
In an SR-graph, we call an alternating cycle an SR-cycle.

\[f_1 e_3 f_2 e_5 f_3 e_7 \]
We would like to know when an SR-graph has an SR-cycle.
Results on SR-graphs

\[S = (V, E, F), \ \mathcal{G} = (V, E), \ \mathcal{H} = (V, F). \]

\(c(\mathcal{G}) \): the number of the set of components of \(\mathcal{G} \)
\(c(\mathcal{H}) \): the number of the set of components of \(\mathcal{H} \)

Theorem G1 ([Nishinaka and Alexander, 2017])

\(S \) is connected and each component of \(\mathcal{H} \) is complete.
Then \(S \) has an SR-cycle if and only if \(c(\mathcal{G}) + c(\mathcal{H}) < |V| + 1 \).

\(\mathcal{H}_i = (V_i, F_i) \) \((i=1,\ldots,n)\) are the components of \(\mathcal{H} \).
For \(\mathcal{H}_i \cong K_{m_1,\ldots,m_t} \), let \(\mu_i \) be \(\max\{m_1,\ldots,m_t\} \).

Theorem G2 ([Nishinaka and Alexander, 2017])
Suppose that \(\mathcal{H}_i \) is a complete multipartite graph for each \(i \).
\(|I(\mathcal{G})| \leq n \) and \(|V_i| > 2\mu_i \) for each \(i \) \(\Rightarrow \) \(S \) has an SR-cycle.
Results on SR-graphs

\[S = (V, E, F), \ G = (V, E), \ H = (V, F). \]

\(c(\mathcal{G}) \): the number of the set of components of \(\mathcal{G} \)

\(c(\mathcal{H}) \): the number of the set of components of \(\mathcal{H} \)

\[\text{Theorem G1 ([Nishinaka and Alexander, 2017])} \]

\(S \) is connected and each component of \(\mathcal{H} \) is complete.

Then \(S \) has an SR-cycle if and only if \(c(\mathcal{G}) + c(\mathcal{H}) < |V| + 1 \).

\(\mathcal{H}_i = (V_i, F_i) \) (\(i = 1, \ldots, n \)) are the components of \(\mathcal{H} \).

For \(\mathcal{H}_i \cong K_{m_1, \ldots, m_t} \), let \(\mu_i \) be \(\max\{m_1, \ldots, m_t\} \).

\[\text{Theorem G2 ([Nishinaka and Alexander, 2017])} \]

Suppose that \(\mathcal{H}_i \) is a complete multipartite graph for each \(i \).

\(|I(\mathcal{G})| \leq n \) and \(|V_i| > 2\mu_i \) for each \(i \) \(\Rightarrow \) \(S \) has an SR-cycle.
Results on SR-graphs

\[S = (V, E, F), \quad \mathcal{G} = (V, E), \quad \mathcal{H} = (V, F). \]

\(c(\mathcal{G}) \): the number of the set of components of \(\mathcal{G} \)
\(c(\mathcal{H}) \): the number of the set of components of \(\mathcal{H} \)

Theorem G1 ([Nishinaka and Alexander, 2017])

\(S \) is connected and each component of \(\mathcal{H} \) is complete.
Then \(S \) has an SR-cycle if and only if \(c(\mathcal{G}) + c(\mathcal{H}) < |V| + 1 \).

\(\mathcal{H}_i = (V_i, F_i) \) \((i = 1, \ldots, n)\) are the components of \(\mathcal{H} \).
For \(\mathcal{H}_i \cong K_{m_1, \ldots, m_t} \), let \(\mu_i \) be \(\max\{m_1, \ldots, m_t\} \).

Theorem G2 ([Nishinaka and Alexander, 2017])

Suppose that \(\mathcal{H}_i \) is a complete multipartite graph for each \(i \).
\(|I(\mathcal{G})| \leq n \) and \(|V_i| > 2\mu_i \) for each \(i \) \(\Rightarrow \) \(S \) has an SR-cycle.
Results on SR-graphs

\[S = (V, E, F), \quad G = (V, E), \quad H = (V, F). \]

\[c(G): \text{the number of the set of components of } G \]
\[c(H): \text{the number of the set of components of } H \]

Theorem G1 ([Nishinaka and Alexander, 2017])

\[S \text{ is connected and each component of } H \text{ is complete.} \]
Then \(S \) has an SR-cycle if and only if \(c(G) + c(H) < |V| + 1 \).

\[H_i = (V_i, F_i) \ (i=1, ..., n) \text{ are the components of } H. \]
For \(H_i \cong K_{m_1, ..., m_t} \), let \(\mu_i \) be \(\max\{m_1, ..., m_t\} \).

Theorem G2 ([Nishinaka and Alexander, 2017])

Suppose that \(H_i \) is a complete multipartite graph for each \(i \).
\[|I(G)| \leq n \text{ and } |V_i| > 2\mu_i \text{ for each } i \Rightarrow \ S \text{ has an SR-cycle.} \]
4. An application of SR-graphs to group algebras

Let KG be the group algebra of a group G over a field K.

Let $a=\sum_{i=1}^{m} \alpha_i f_i$ and $b=\sum_{j=1}^{n} \beta_j g_j$ be in KG,

where $f_i, g_j \in G$ with $f_i \neq f_j, g_i \neq g_j (i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

Suppose $ab \in K$. Then $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j f_i g_j \in K$.

If $f_i g_j \not\in K$, $\exists k, l$, s.t. $f_i g_j = f_k g_l$.

Now, let $V = \{v_{ij} | i, j\}$ and let E be the set defined by $v_{ij} v_{kl} \in E$ if $f_i g_j = f_k g_l$, and also F the set done by $v_{ij} v_{st} \in F$ if $j = t$.

Then $S = (V, E, F)$ is an SR-graph.
4. An application of SR-graphs to group algebras

Let KG be the group algebra of a group G over a field K.

Let $a=\sum_{i=1}^{m} \alpha_if_i$ and $b=\sum_{j=1}^{n} \beta_jg_j$ be in KG,

where $f_i, g_j \in G$ with $f_i \neq f_j, g_i \neq g_j$ ($i \neq j$) and $\alpha_i, \beta_j \in K \setminus \{0\}$.

Suppose $ab \in K$. Then $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i\beta_jf_ig_j \in K$.

If $f_ig_j \notin K$, $\exists k, l$, s.t. $f_ig_j = f_kg_l$.

Now, let $V=\{v_{ij} \mid i, j\}$ and let E be the set defined by $v_{ij}v_{kl} \in E$ if $f_ig_j = f_kg_l$, and also F the set done by $v_{ij}v_{st} \in F$ if $j = t$.

Then $S = (V, E, F)$ is an SR-graph.
4. An application of SR-graphs to group algebras

Let KG be the group algebra of a group G over a field K.

Let $a = \sum_{i=1}^{m} \alpha_i f_i$ and $b = \sum_{j=1}^{n} \beta_j g_j$ be in KG,

where $f_i, g_j \in G$ with $f_i \neq f_j, g_i \neq g_j$ ($i \neq j$) and $\alpha_i, \beta_j \in K \setminus \{0\}$.

Suppose $ab \in K$. Then $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j f_i g_j \in K$.

If $f_ig_j \not\in K$, $\exists k, l$, s.t. $f_ig_j = f_ig_l$.

Now, let $V=\{v_{ij} \mid i, j\}$ and let E be the set defined by $v_{ij}v_{kl} \in E$ if $f_ig_j = f_ig_l$, and also F the set done by $v_{ij}v_{st} \in F$ if $j = t$.

Then $S = (V, E, F)$ is an SR-graph.
4. An application of SR-graphs to group algebras

Let KG be the group algebra of a group G over a field K.

Let $a= \sum_{i=1}^{m} \alpha_i f_i$ and $b= \sum_{j=1}^{n} \beta_j g_j$ be in KG, where $f_i, g_j \in G$ with $f_i \neq f_j, g_i \neq g_j$ (i \neq j) and $\alpha_i, \beta_j \in K \setminus \{0\}$.

Suppose $ab \in K$. Then $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j f_i g_j \in K$.

If $f_i g_j \notin K$, \exists k, l, s.t. $f_i g_j = f_k g_l$.

Now, let $V=\{v_{ij} | i,j\}$ and let E be the set defined by $v_{ij} v_{kl} \in E$ if $f_i g_j = f_k g_l$, and also F the set done by $v_{ij} v_{st} \in F$ if $j = t$.

Then $S = (V, E, F)$ is an SR-graph.
4. An application of SR-graphs to group algebras

Let KG be the group algebra of a group G over a field K.

Let $a = \sum_{i=1}^{m} \alpha_i f_i$ and $b = \sum_{j=1}^{n} \beta_j g_j$ be in KG,

where $f_i, g_j \in G$ with $f_i \neq f_j, g_i \neq g_j (i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

Suppose $ab \in K$. Then $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j f_i g_j \in K$.

If $f_i g_j \notin K$, $\exists k, l$, s.t. $f_i g_j = f_k g_l$.

Now, let $V = \{v_{ij} \mid i, j\}$ and let E be the set defined by $v_{ij} v_{kl} \in E$ if $f_i g_j = f_k g_l$, and also F the set done by $v_{ij} v_{st} \in F$ if $j = t$.

Then $S = (V, E, F)$ is an SR-graph.
4. An application of SR-graphs to group algebras

Let KG be the group algebra of a group G over a field K.

Let $a = \sum_{i=1}^{m} \alpha_i f_i$ and $b = \sum_{j=1}^{n} \beta_j g_j$ be in KG,

where $f_i, g_j \in G$ with $f_i \neq f_j, g_i \neq g_j$ ($i \neq j$) and $\alpha_i, \beta_j \in K \setminus \{0\}$.

Suppose $ab \in K$. Then $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j f_i g_j \in K$.

If $f_i g_j \notin K$, $\exists k, l$, s.t. $f_i g_j = f_k g_l$.

Now, let $V = \{v_{ij} \mid i, j\}$ and let E be the set defined by $v_{ij} v_{kl} \in E$ if $f_i g_j = f_k g_l$, and also F the set done by $v_{ij} v_{st} \in F$ if $j = t$.

Then $S = (V, E, F)$ is an SR-graph.
4. An application of SR-graphs to group algebras

Let KG be the group algebra of a group G over a field K.

Let $a = \sum_{i=1}^{m} \alpha_i f_i$ and $b = \sum_{j=1}^{n} \beta_j g_j$ be in KG,

where $f_i, g_j \in G$ with $f_i \neq f_j, g_i \neq g_j (i \neq j)$ and $\alpha_i, \beta_j \in K \setminus \{0\}$.

Suppose $ab \in K$. Then $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j f_i g_j \in K$.

If $f_i g_j \notin K$, $\exists k, l$, s.t. $f_i g_j = f_k g_l$.

Now, let $V = \{v_{ij} \mid i, j\}$ and let E be the set defined by $v_{ij} v_{kl} \in E$ if $f_i g_j = f_k g_l$, and also F the set done by $v_{ij} v_{st} \in F$ if $j = t$.

Then $S = (V, E, F)$ is an SR-graph.
Suppose that there is a SR-cycle in S as follows:

\[f_1 g_1 = f_2 g_2 \\
\quad f_3 g_2 = f_4 g_3 \\
\quad f_6 g_1 = f_5 g_3 \]

\[f_1^{-1} f_2 f_3^{-1} f_4 f_5^{-1} f_6 = 1 \]

Recall that f_i's are supports of $a = \sum_{i=1}^{m} \alpha_i f_i$. So, if we prepare f_i's so as not to satisfy the above equation, then we can conclude $ab \notin K$.
Suppose that there is a SR-cycle in S as follows:

\begin{align*}
v_1 & \rightarrow v_2 & f_1 g_1 &= f_2 g_2 \\
v_2 & \rightarrow v_3 & f_2 g_2 &= f_4 g_3 \\
v_3 & \rightarrow v_4 & f_3 g_2 &= f_4 g_3 \\
v_4 & \rightarrow v_5 & f_1 g_1 &= f_5 g_3 \\
v_5 & \rightarrow v_6 & f_6 g_1 &= f_5 g_3 \\
v_6 & \rightarrow v_1 & f_1^{-1} f_2 f_3^{-1} f_4 f_5^{-1} f_6 &= 1
\end{align*}

Recall that f_i's are supports of $a = \sum_{i=1}^{m} \alpha_i f_i$. So, if we prepare f_i's so as not to satisfy the above equation, then we can conclude $ab \not\in K$.
Suppose that there is a SR-cycle in S as follows:

Recall that f_i’s are supports of $a = \sum_{i=1}^{m} \alpha_i f_i$. So, if we prepare f_i’s so as not to satisfy the above equation, then we can conclude $ab \notin K$.

$$f_1^{-1}f_2f_3^{-1}f_4f_5^{-1}f_6 = 1$$
5. How to prove primitivity of group algebras: Outline of the proof of Theorem 1

Recall:

Theorem 1 ([Nishinaka and Alexander, 2017])

If G is a countable infinite group and G satisfies (\ast),
then KG is primitive for any K.

where,

\[\left\{ \begin{array}{l}
\text{For any non-empty subsets } M \text{ of } G \text{ consisting of finite number of elements } \neq 1, \\
\text{there exist } x_1, x_2, x_3 \in G \text{ such that } M^{x_1}, M^{x_2}, M^{x_3} \text{ are mutually reduced.}
\end{array} \right. \]

\[
\left\{ \begin{array}{l}
g_1, g_2, \ldots, g_m \in \bigcup_{i=1}^{3} \widetilde{M^{x_i}}, \quad g_1g_2 \cdots g_m = 1 \quad \Rightarrow \quad \exists i, j \text{ s.t. } g_i, g_{i+1} \in \widetilde{M^{x_j}}.
\end{array} \right.
\]
5. How to prove primitivity of group algebras: Outline of proof of Theorem 1

Recall:

Theorem 1 ([Nishinaka and Alexander, 2017])

If G is a countable infinite group and G satisfies $(*)$, then KG is primitive for any K.

where,

$(*)$

- For any non-empty subsets M of G consisting of finite number of elements $\neq 1$,
 - there exist $x_1, x_2, x_3 \in G$ such that $M^{x_1}, M^{x_2}, M^{x_3}$ are mutually reduced.

\[
\begin{align*}
 \text{g}_1, \text{g}_2, \ldots, \text{g}_m \in \bigcup_{i=1}^3 \tilde{M}^{x_i}, \text{g}_1\text{g}_2\cdots\text{g}_m = 1 & \implies \exists i, j \text{ s.t. } \text{g}_i, \text{g}_{i+1} \in \tilde{M}^{x_j}.
\end{align*}
\]
Formanek’s Method

\[a \in KG \setminus \{0\}, \quad \varepsilon(a) \in KGaKG, \quad \rho = \sum_{a \in KG \setminus \{0\}} (\varepsilon(a) + 1)KG. \]

\[\rho \neq KG \Rightarrow KG \text{ is primitive} \]

The main difficulty here is how to choose elements \(\varepsilon(a) \)'s so as to make \(\rho \) be proper.

Note that if \(r \in \rho \), then \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} \varepsilon(a_t) + 1) b_t \) for some \(a_t, b_t \) in \(KG \).

Let \(a_t = \sum_{i=1}^{m_t} \alpha_{ti} f_{ti} \) and \(b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj} \) be in \(KG \).

where \(f_i, g_j \in G \) with \(f_i \neq f_j, g_i \neq g_j \) (\(i \neq j \)) and \(\alpha_i, \beta_j \in K \setminus \{0\} \).

We can choose \(\varepsilon(a_t) \) so that \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t \).

where \(x_{ts}, y_{ts} \in G \), \(A_t = x_{t1}^{-1} a_t x_{t1} + x_{t2}^{-1} a_t x_{t2} + x_{t3}^{-1} a_t x_{t3} \).

All we have to do is to show, \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t \neq 1 \).
Formanek’s Method

\[a \in KG \setminus \{0\}, \quad \varepsilon(a) \in KGaKG, \quad \rho = \sum_{a \in KG \setminus \{0\}} (\varepsilon(a)+1)KG. \]

\[\rho \neq KG \Rightarrow KG \text{ is primitive} \]

The main difficulty here is how to choose elements \(\varepsilon(a) \)'s so as to make \(\rho \) be proper.

Note that if \(r \in \rho \), then \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} \varepsilon(a_t) + 1)b_t \) for some \(a_t, b_t \) in \(KG \).

Let \(a_t = \sum_{i=1}^{m_t} \alpha_{ti}f_{ti} \) and \(b_t = \sum_{j=1}^{n_t} \beta_{tj}g_{tj} \) be in \(KG \).

where \(f_i, g_j \in G \) with \(f_i \neq f_j, g_i \neq g_j (i \neq j) \) and \(\alpha_i, \beta_j \in K \setminus \{0\} \).

We can choose \(\varepsilon(a_t) \) so that \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts}A_t + 1)b_t \).

where \(x_{ts}, y_{ts} \in G, \ A_t = x_{t1}^{-1}a_tx_{t1} + x_{t2}^{-1}a_tx_{t2} + x_{t3}^{-1}a_tx_{t3} \).

All we have to do is to show, \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts}A_t + 1)b_t \neq 1 \).
Formanek’s Method

\[a \in KG \setminus \{0\}, \ \varepsilon(a) \in KG a KG, \ \rho = \sum_{a \in KG \setminus \{0\}} (\varepsilon(a)+1)KG. \]

\[\rho \neq KG \Rightarrow KG \text{ is primitive} \]

The main difficulty here is how to choose elements \(\varepsilon(a) \)'s so as to make \(\rho \) be proper.

Note that if \(r \in \rho \), then \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} \varepsilon(a_t) + 1) b_t \) for some \(a_t, b_t \) in \(KG \).

Let \(a_t = \sum_{i=1}^{m_t} a_{ti} f_{ti} \) and \(b_t = \sum_{j=1}^{n_t} b_{tj} g_{tj} \) be in \(KG \).

where \(f_i, g_j \in G \) with \(f_i \neq f_j, g_i \neq g_j \ (i \neq j) \) and \(a_i, \beta_j \in K \setminus \{0\} \).

We can choose \(\varepsilon(a_t) \) so that \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t \).

where \(x_{ts}, y_{ts} \in G, \ A_t = x_t^{-1} a_t x_t + x_t^{-1} a_t x_t x_t^{-1} a_t x_t \).

All we have to do is to show, \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t \neq 1 \).
Formanek’s Method

\[a \in KG \setminus \{0\}, \quad \varepsilon(a) \in KG a KG, \quad \rho = \sum_{a \in KG \setminus \{0\}} (\varepsilon(a)+1)KG. \]

\[\rho \neq KG \Rightarrow KG \text{ is primitive} \]

The main difficulty here is how to choose elements \(\varepsilon(a) \)'s so as to make \(\rho \) be proper.

Note that if \(r \in \rho \), then \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} \varepsilon(a_t) + 1)b_t \) for some \(a_t, b_t \) in \(KG \).

Let \(a_t = \sum_{i=1}^{m_t} a_t f_{ti} \) and \(b_t = \sum_{j=1}^{n_t} \beta_t g_{tj} \) be in \(KG \).

where \(f_i, g_j \in G \) with \(f_i \neq f_j, g_i \neq g_j \ (i \neq j) \) and \(\alpha_i, \beta_j \in K \setminus \{0\} \).

We can choose \(\varepsilon(a_t) \) so that \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} x_{ts} A_t + 1)b_t \).

where \(x_{ts}, y_{ts} \in G, \ A_t = x_{t1}^{-1} a_t x_{t1} + x_{t2}^{-1} a_t x_{t2} + x_{t3}^{-1} a_t x_{t3} \).

All we have to do is to show, \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1)b_t \neq 1. \)
Formanek’s Method

\(a \in KG \setminus \{0\}, \quad \varepsilon(a) \in KGaKG, \quad \rho = \sum_{a \in KG \setminus \{0\}} (\varepsilon(a)+1)KG. \)

\(\rho \neq KG \Rightarrow KG \text{ is primitive} \)

The main difficulty here is how to choose elements \(\varepsilon(a)’s \) so as to make \(\rho \) be proper.

Note that if \(r \in \rho, \) then \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} \varepsilon(a_{t}) + 1)b_{t} \) for some \(a_{t}, b_{t} \) in \(KG. \)

Let \(a_{t} = \sum_{i=1}^{m_{t}} a_{ti}f_{ti} \) and \(b_{t} = \sum_{j=1}^{n_{t}} \beta_{tj}g_{tj} \) be in \(KG. \)

where \(f_{i}, g_{j} \in G \) with \(f_{i} \neq f_{j}, g_{i} \neq g_{j} (i \neq j) \) and \(a_{i}, \beta_{j} \in K \setminus \{0\}. \)

We can choose \(\varepsilon(a_{t}) \) so that \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts}A_{t} + 1)b_{t}. \)

where \(x_{ts}, y_{ts} \in G, \quad A_{t} = x_{t1}^{-1}a_{t}x_{t1} + x_{t2}^{-1}a_{t}x_{t2} + x_{t3}^{-1}a_{t}x_{t3}. \)

All we have to do is to show, \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts}A_{t} + 1)b_{t} \neq 1. \)
Formanek’s Method

\[a \in KG\backslash \{0\}, \quad \varepsilon(a) \in KG a KG, \quad \rho = \sum_{a \in KG \backslash \{0\}} (\varepsilon(a)+1)KG. \]

\[\rho \neq KG \Rightarrow KG \text{ is primitive} \]

The main difficulty here is how to choose elements \(\varepsilon(a) \)'s so as to make \(\rho \) be proper.

Note that if \(r \in \rho \), then \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} \varepsilon(a_t) + 1)b_t \) for some \(a_t, b_t \) in \(KG \).

Let \(a_t = \sum_{i=1}^{m_t} a_t f_{ti} \) and \(b_t = \sum_{j=1}^{n_t} b_t g_{tj} \) be in \(KG \).

where \(f_i, g_j \in G \) with \(f_i \neq f_j, g_i \neq g_j \) (\(i \neq j \)) and \(\alpha_i, \beta_j \in K \backslash \{0\} \).

We can choose \(\varepsilon(a_t) \) so that \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t \).

where \(x_{ts}, y_{ts} \in G \), \(A_t = x_{t1}^{-1} a_t x_{t1} + x_{t2}^{-1} a_t x_{t2} + x_{t3}^{-1} a_t x_{t3} \).

All we have to do is to show, \(r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1) b_t \neq 1 \).
If \(M^{st} = \{ x_{st}^{-1} f_{t1} x_{st}, \ldots, x_{st}^{-1} f_{tm} x_{st} \} \) (s = 1,2,3) are mutually reduced and \(y_{ts} \) (1 \(\leq t \leq l, 1 \leq s \leq 3 \)) are also mutually reduced, then we have

\[
r = \sum_{t=1}^{l} \left(\sum_{s=1}^{3} y_{ts} A_t + 1 \right) b_t \neq 1.
\]

In fact, suppose, to the contrary, that \(r = 1 \).

\[
r = \sum_{t,s=1}^{l,3} (y_{ts} A_t + 1) b_t = \sum_{s=1}^{3} (y_{1s} A_1 b_1 + b_1) + \ldots + \sum_{s=1}^{3} (y_{ts} A_t b_t + b_t) + \ldots + \sum_{s=1}^{3} (y_{ls} A_l b_l + b_l) = 1.
\]

By Theorem G2, \(|\text{Supp}(A_t b_t)| > n_t \).

By this result and Theorem G1 implies \(y_{is}^{-1} y_{jt} \ldots y_{kp}^{-1} y_{lj} = 1 \)

for \((i,s) \neq (j,t), \ldots, (k,p) \neq (l,q)\); a contradiction.

Recall:

\[
A_t b_t = x_{t1}^{-1} a_t x_{t1} + x_{t2}^{-1} a_t x_{t2} + x_{t3}^{-1} a_t x_{t3},
\]

\[
a_t = \sum_{i=1}^{m_t} a_t f_{ti} \quad \text{and} \quad b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}.
\]
If $M^{x_{st}} = \{ x_{st}^{-1} f_{t1} x_{st}, \ldots, x_{st}^{-1} f_{tm_t} x_{st} \} (s = 1, 2, 3)$ are mutually reduced and $y_{ts} \ (1 \leq t \leq l, 1 \leq s \leq 3)$ are also mutually reduced, then we have

$$r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1)b_t \neq 1.$$

In fact, suppose, to the contrary, that $r = 1$.

$$r = \sum_{t, s = 1}^{l, 3} (y_{ts} A_t + 1)b_t = \sum_{s = 1}^{3} (y_{1s} A_1 b_1 + b_1) + \cdots + \sum_{s = 1}^{3} (y_{ts} A_t b_t + b_t) + \cdots + \sum_{s = 1}^{3} (y_{ls} A_l b_l + b_l) = 1.$$

By Theorem G2, $|\text{Supp}(A_t b_t)| > n_t$.

By this result and Theorem G1 implies $y_{ls}^{-1} y_{jt} \cdots y_{kp}^{-1} y_{lq} = 1$ for $(i, s) \neq (j, t), \ldots, (k, p) \neq (l, q)$; a contradiction.

Recall:

$$A_t b_t = x_{t1}^{-1} a_t x_{t1} + x_{t2}^{-1} a_t x_{t2} + x_{t3}^{-1} a_t x_{t3},$$

$$a_t = \sum_{i=1}^{m_t} a_{ti} f_{ti} \text{ and } b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}.$$
If $M^{x_{st}} = \{x_{st}^{-1} f_{t1} x_{st}, \ldots, x_{st}^{-1} f_{tm_{t}} x_{st}\} (s = 1, 2, 3)$ are mutually reduced and $y_{ts} (1 \leq t \leq l, 1 \leq s \leq 3)$ are also mutually reduced, then we have

$$r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1)b_t \neq 1.$$

In fact, suppose, to the contrary, that $r = 1$.

$$r = \sum_{t,s=1}^{l,3} (y_{ts} A_t + 1)b_t = \sum_{s=1}^{3} (y_{1s} A_1 b_1 + b_1) + \cdots + \sum_{s=1}^{3} (y_{ts} A_t b_t + b_t) + \cdots + \sum_{s=1}^{3} (y_{ls} A_l b_l + b_l) = 1.$$

By Theorem G2, $|\text{Supp}(A_t b_t)| > n_t$.

By this result and Theorem G1 implies

$$y_{is}^{-1} y_{jt} \cdots y_{kp}^{-1} y_{lq} = 1$$

for $(i, s) \neq (j, t), \ldots, (k, p) \neq (l, q)$; a contradiction.

Recall:

$$A_t b_t = x_{t1}^{-1} a_t x_{t1} + x_{t2}^{-1} a_t x_{t2} + x_{t3}^{-1} a_t x_{t3},$$

$$a_t = \sum_{i=1}^{m_t} a_{ti} f_{ti} \quad \text{and} \quad b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}.$$
If \(M^{x_{st}} = \{ x_{st}^{-1}f_{t_{1}}x_{st}, \ldots, x_{st}^{-1}f_{t_{m_{t}}}x_{st} \} \) \((s = 1,2,3)\) are mutually reduced and \(y_{ts} \) \((1 \leq t \leq l, 1 \leq s \leq 3)\) are also mutually reduced, then we have

\[
r = \sum_{t=1}^{l}(\sum_{s=1}^{3}y_{ts}A_{t} + 1)b_{t} \neq 1.
\]

In fact, suppose, to the contrary, that \(r = 1 \).

\[
r = \sum_{t,s=1}^{l,3}(y_{ts}A_{t} + 1)b_{t} = \sum_{s=1}^{3}(y_{1s}A_{1}b_{1} + b_{1}) + \cdots + \sum_{s=1}^{3}(y_{ts}A_{t}b_{t} + b_{t}) + \cdots + \sum_{s=1}^{3}(y_{ls}A_{l}b_{l} + b_{l}) = 1.
\]

By Theorem G2, \(|\text{Supp}(A_{t} b_{t})| > n_{t} .\)

By this result and Theorem G1 implies \(y_{is}^{-1}y_{jt} \cdots y_{kp}^{-1}y_{lq} = 1 \) for \((i, s) \neq (j, t), \cdots, (k, p) \neq (l, q); \)
a contradiction.

Recall:

\[
\begin{align*}
A_{t} b_{t} &= x_{t_{1}}^{-1}a_{t}x_{t_{1}} + x_{t_{2}}^{-1}a_{t}x_{t_{2}} + x_{t_{3}}^{-1}a_{t}x_{t_{3}}, \\
\sigma_{t} &= \sum_{i=1}^{m_{t}}a_{ti}f_{ti} \quad \text{and} \quad b_{t} = \sum_{j=1}^{n_{t}}\beta_{tj}g_{tj}.
\end{align*}
\]
If $M^{x_{st}} = \{ x_{st}^{-1} f_{t_1} x_{st}, \ldots, x_{st}^{-1} f_{m_t} x_{st}\} (s = 1,2,3)$ are mutually reduced and $y_{ts} (1 \leq t \leq l, 1 \leq s \leq 3)$ are also mutually reduced, then we have

$$r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts} A_t + 1)b_t \neq 1.$$

In fact, suppose, to the contrary, that $r = 1$.

$$r = \sum_{t,s=1}^{l,3} (y_{ts} A_t + 1)b_t = \sum_{s=1}^{3} (y_{1s} A_1 b_1 + b_1) + \cdots + \sum_{s=1}^{3} (y_{ts} A_t b_t + b_t) + \cdots + \sum_{s=1}^{3} (y_{ls} A_l b_l + b_l) = 1.$$

By Theorem G2, $|\text{Supp}(A_t b_t)| > n_t$.

By this result and Theorem G1 implies $y_{is}^{-1} y_{jt} \cdots y_{kp}^{-1} y_{lq} = 1$ for $(i,s) \neq (j,t), \cdots, (k,p) \neq (l,q)$; a contradiction.

Recall:
$$A_t \ b_t = x_{t_1}^{-1} a_t x_{t_1} + x_{t_2}^{-1} a_t x_{t_2} + x_{t_3}^{-1} a_t x_{t_3},$$
$$a_t = \sum_{i=1}^{m_t} a_{ti} f_{ti} \text{ and } b_t = \sum_{j=1}^{n_t} \beta_{tj} g_{tj}.$$
If $M^{x_{st}} = \{ x_{st}^{-1}f_{t1}x_{st}, \ldots, x_{st}^{-1}f_{tm_t}x_{st} \}$ $(s = 1,2,3)$ are mutually reduced and y_{ts} $(1 \leq t \leq l, 1 \leq s \leq 3)$ are also mutually reduced, then we have

$$r = \sum_{t=1}^{l} (\sum_{s=1}^{3} y_{ts}A_t + 1)b_t \neq 1.$$

In fact, suppose, to the contrary, that $r = 1$.

$$r = \sum_{t,s=1}^{l,3} (y_{ts}A_t + 1)b_t = \sum_{s=1}^{3} (y_{1s}A_1b_1 + b_1) + \cdots + \sum_{s=1}^{3} (y_{ts}A_tb_t + b_t) + \cdots + \sum_{s=1}^{3} (y_{ls}A_l b_l + b_l) = 1.$$

By Theorem G2, $|\text{Supp}(A_t b_t)| > n_t$.

By this result and Theorem G1 implies $y_{is}^{-1}y_{jt} \cdots y_{kp}^{-1}y_{lq} = 1$ for $(i,s) \neq (j,t), \cdots, (k,p) \neq (l,q)$; a contradiction.

Recall:

$$\begin{aligned}
A_t b_t &= x_{t1}^{-1}a_t x_{t1} + x_{t2}^{-1}a_t x_{t2} + x_{t3}^{-1}a_t x_{t3}, \\
a_t &= \sum_{i=1}^{m_t} a_{ti}f_{ti} \quad \text{and} \quad b_t = \sum_{j=1}^{n_t} \beta_{tj}g_{tj}.
\end{aligned}$$
Thank you!

[N, 2016] “Uncountable locally free groups and their group rings”
arXiv:1601.00295

[N and A, 2017] “Non-noetherian groups and primitivity of their group algebras”
J. Algebra Vol. 473

[N, 2011] “Group rings of countable non-abelian locally free groups are primitive”
Int. J. alg. and comp Vol 21

[N,2007] “Group rings of proper ascending HNN extensions of countably infinite free groups are primitive”
J. Algebra Vol. 317