On p-groups of conjugate rank 1 and nilpotency class 3.

Tushar Kanta Naik
HRI, Allahbad, India
(Joint work with Rahul Kitture and Manoj Yadav)

Groups St Andrews 2017, Birmingham

12/08/2017
(11 A.M)
Theorem (J. Cossey-T. O. Hawkes, 2000)
Let p be a prime and $0 = e_0 < e_1 < \cdots < e_n$ be integers. Then there exists a p-group G with nilpotency class 2 such that, the set of conjugacy class sizes of G is exactly
\[\{1 = p^{e_0}, p^{e_1}, \ldots, p^{e_n} \}. \]
Theorem (J. Cossey - T. O. Hawkes, 2000)
Let p be a prime and $0 = e_0 < e_1 < \cdots < e_n$ be integers. Then there exists a p-group G with nilpotency class 2 such that, the set of conjugacy class sizes of G is exactly
\{1 = p^{e_0}, p^{e_1}, \ldots, p^{e_n}\}.

Problem 1 (Avinoam Mann, 2011)
Find other constructions, in particular ones that produce groups of higher class.

Let p be a prime and $0 = e_0 < e_1 < \cdots < e_n$ be integers. Then there exists a p-group G with nilpotency class 2 such that, the set of conjugacy class sizes of G is exactly
\[\{1 = p^{e_0}, p^{e_1}, \ldots, p^{e_n}\}. \]

Problem 1 (Avinoam Mann, 2011)

Find other constructions, in particular ones that produce groups of higher class.

Problem 2

What about groups with exactly two conjugacy class sizes?
Let’s go in history
A finite group G is said to be of *conjugate type* $(1 = m_0, m_1, \ldots, m_r)$; if m_i’s are precisely the different sizes of conjugacy classes of G. Here we say that G is of conjugate rank r.

In the 1953, N. Ito started the study of finite groups with few conjugacy class sizes. In a series of paper "On finite groups with given conjugate type I, II, III (1953, 1970, 1970)", he studied finite groups with 2, 3, 4 conjugacy class sizes respectively. In this talk, we concentrate mainly on finite groups with exactly two conjugacy class sizes.
A finite group G is said to be of \textit{conjugate type} $(1 = m_0, m_1, \ldots, m_r)$; if m_i’s are precisely the different sizes of conjugacy classes of G. Here we say that G is of conjugate rank r.

In the 1953, N. Ito started the study of finite groups with few conjugacy class sizes.
A finite group G is said to be of *conjugate type* $(1 = m_0, m_1, \ldots, m_r)$; if m_i’s are precisely the different sizes of conjugacy classes of G. Here we say that G is of conjugate rank r.

In the 1953, N. Ito started the study of finite groups with few conjugacy class sizes.

In a series of paper "*On finite groups with given conjugate type I, II, III (1953, 1970, 1970)*", he studied finite groups with 2, 3, 4 conjugacy class sizes respectively.
A finite group G is said to be of *conjugate type* $(1 = m_0, m_1, \ldots, m_r)$; if m_i's are precisely the different sizes of conjugacy classes of G. Here we say that G is of conjugate rank r.

In the 1953, N. Ito started the study of finite groups with few conjugacy class sizes.

In a series of paper "*On finite groups with given conjugate type I, II, III (1953, 1970, 1970)*", he studied finite groups with 2, 3, 4 conjugacy class sizes respectively.

In this talk, we concentrate mainly on finite groups with exactly two conjugacy class sizes.
Theorem (N. Ito, 1953)

Let G be a finite group with exactly two conjugacy class sizes, namely 1 and m. Then the following hold;

m is a power of some prime p, say $m = p^n$.

$G = P \times A$, where P is the non-abelian Sylow p-subgroup of G and A is an abelian p'-subgroup of G.

In particular, G is nilpotent.
Theorem (N. Ito, 1953)

Let G be a finite group with exactly two conjugacy class sizes, namely 1 and m. Then the following hold;

- m is a power of some prime p, say $m = p^n$.

$G = P \times A$, where P is the non-abelian Sylow p-subgroup of G and A is an abelian p'-subgroup of G.

In particular, G is nilpotent.

T. K. Naik (Groups St Andrews 2017, Birmingham)

On p-groups . . . 12/08/2017 (11 A.M)
Theorem (N. Ito, 1953)

Let G be a finite group with exactly two conjugacy class sizes, namely 1 and m. Then the following hold;

- m is a power of some prime p, say $m = p^n$.
- $G = P \times A$, where P is the non-abelian sylow p-subgroup of G and A is an abelian p'-subgroup of G.

In particular, G is nilpotent.
Theorem (N. Ito, 1953)

Let G be a finite group with exactly two conjugacy class sizes, namely 1 and m. Then the following hold;

- m is a power of some prime p, say $m = p^n$.
- $G = P \times A$, where P is the non-abelian sylow p-subgroup of G and A is an abelian p'-subgroup of G.
- In particular, G is nilpotent.
Problem 3
Find a bound on the nilpotency class of p-groups with exactly two conjugacy class sizes.
Problem 3

Find a bound on the nilpotency class of p-groups with exactly two conjugacy class sizes.

Problem 4

Classify finite p-groups of conjugate type $(1, p^n)$, where $n \geq 1$.
Theorem (I.M. Isaacs, 1970)

Let G be a finite group, which contain a proper normal subgroup N such that all the conjugacy classes of G, which lie outside N have same lengths.

Corollary 1

Let G be a finite p-group with conjugate type $(1, p^n)$. Then $\exp(G/Z(G)) = p$.

Corollary 2

Let G be a finite 2-group with conjugate type $(1, 2^n)$. Then the nilpotency class of G is exactly 2.
Theorem (I.M. Isaacs, 1970)

Let G be a finite group, which contain a proper normal subgroup N such that all the conjugacy classes of G, which lie outside N have same lengths. Then either G/N is cyclic or every non-identity element of G/N is of prime order.

Corollary 1

Let G be a finite p-group with conjugate type $(1, p^n)$. Then $\exp(G/Z(G)) = p$.

Corollary 2

Let G be a finite 2-group with conjugate type $(1, 2^n)$. Then the nilpotency class of G is exactly 2.
Theorem (I.M. Isaacs, 1970)

Let G be a finite group, which contain a proper normal subgroup N such that all the conjugacy classes of G, which lie outside N have same lengths. Then either G/N is cyclic or every non-identity element of G/N is of prime order.

Corollary 1

Let G be a finite p-group with conjugate type $(1, p^n)$. Then $\exp(G/Z(G)) = p$.

Corollary 2

Let G be a finite 2-group with conjugate type $(1, 2^n)$. Then the nilpotency class of G is exactly 2.

Now, we can modify problem 3, and state it as

Problem 3

Find a bound on the nilpotency class of p-groups with exactly two conjugacy class sizes, for odd primes p.

T. K. Naik (Groups St Andrews 2017, Birmingham)
Theorem (I.M. Isaacs, 1970)
Let G be a finite group, which contain a proper normal subgroup N such that all the conjugacy classes of G, which lie outside N have same lengths. Then either G/N is cyclic or every non-identity element of G/N is of prime order.

Corollary 1
Let G be a finite p-group with conjugate type $(1, p^n)$. Then $\exp(G/Z(G)) = p$.

Corollary 2
Let G be a finite 2-group with conjugate type $(1, 2^n)$. Then nilpotency class of G is exactly 2.
Theorem (I. M. Isaacs, 1970)
Let \(G \) be a finite group, which contain a proper normal subgroup \(N \) such that all the conjugacy classes of \(G \), which lie outside \(N \) have same lengths. Then either \(G/N \) is cyclic or every non-identity element of \(G/N \) is of prime order.

Corollary 1
Let \(G \) be a finite \(p \)-group with conjugate type \((1, p^n)\). Then \(\exp(G/Z(G)) = p \).

Corollary 2
Let \(G \) be a finite 2-group with conjugate type \((1, 2^n)\). Then nilpotency class of \(G \) is exactly 2.

Now, we can modify problem 3, and state it as

Problem 3
Find a bound on the nilpotency class of \(p \)-groups with exactly two conjugacy class sizes, for odd primes \(p \).
Theorem (K. Ishikawa, 2002)
Let p be an odd prime and G be a p-group with exactly two conjugacy class sizes.
Theorem (K. Ishikawa, 2002)

Let p be an odd prime and G be a p-group with exactly two conjugacy class sizes. Then the nilpotency class of G is either 2 or 3.
Theorem (K. Ishikawa, 2002)

Let p be an odd prime and G be a p-group with exactly two conjugacy class sizes. Then the nilpotency class of G is either 2 or 3. Mann and Isaacs independently generalized this.
Now we summarize the situation on Problem 1 and Problem 2, (with the extra conditions) for the groups having exactly two conjugacy class sizes.

1. Given any odd prime p and any integer $n \geq 1$, we cannot construct finite p-group of conjugate type $(1, p^n)$, with nilpotency class greater than 3.

2. Given any integer $n \geq 1$, we cannot construct finite 2-group of conjugate type $(1, 2^n)$, with nilpotency class greater than 2.

Now, we concentrate on Problem 4; Problem 4

Classify finite p-groups of conjugate type $(1, p^n)$, where $n \geq 1$.

T. K. Naik (Groups St Andrews 2017, Birmingham)
Now we summarize the situation on Problem 1 and Problem 2, (with the extra conditions) for the groups having exactly two conjugacy class sizes.

1. Given any odd prime p and any integer $n \geq 1$, we can not construct finite p-group of conjugate type $(1, p^n)$, with nilpotency class greater than 3.
Now we summarize the situation on Problem 1 and Problem 2, (with the extra conditions) for the groups having exactly two conjugacy class sizes.

1. Given any odd prime p and any integer $n \geq 1$, we can not construct finite p-group of conjugate type $(1, p^n)$, with nilpotency class greater than 3.

2. Given any integer $n \geq 1$, We can not construct finite 2-group of conjugate type $(1, 2^n)$, with nilpotency class greater than 2.
Now we summarize the situation on Problem 1 and Problem 2, (with the extra conditions) for the groups having exactly two conjugacy class sizes.

1. Given any odd prime p and any integer $n \geq 1$, we can not construct finite p-group of conjugate type $(1, p^n)$, with nilpotency class greater than 3.

2. Given any integer $n \geq 1$, we can not construct finite 2-group of conjugate type $(1, 2^n)$, with nilpotency class greater than 2.

Now, we concentrate on Problem 4;

Problem 4

Classify finite p-groups of conjugate type $(1, p^n)$, where $n \geq 1$.
Here, we present a classification (up to isoclinism) for finite p-groups of
Here, we present a classification (up to isoclinism) for finite p-groups of

class 2 and conjugate type $(1, p^n)$; for $n \leq 3$.
Here, we present a classification (up to isoclinism) for finite p-groups of

1. class 2 and conjugate type $(1, p^n)$; for $n \leq 3$.

2. class 3 and conjugate type $(1, p^n)$; for all $n \geq 1$.
Isoclinism (P. Hall, 1940)

Two finite groups G and H are called *isoclinic* if there exists an isomorphism ϕ of the factor group $\bar{G} = G/\mathbb{Z}(G)$ onto $\bar{H} = H/\mathbb{Z}(H)$, and an isomorphism θ of the subgroup G' onto H' such that the following diagram is commutative

\[
\begin{array}{ccc}
\bar{G} \times \bar{G} & \xrightarrow{a_G} & G' \\
\phi \times \phi \downarrow & & \downarrow \theta \\
\bar{H} \times \bar{H} & \xrightarrow{a_H} & H'.
\end{array}
\]

a_G and a_H are canonical commutator maps.
Isoclinism (P. Hall, 1940)

Two finite groups G and H are called isoclinic if there exists an isomorphism ϕ of the factor group $\bar{G} = G/\mathbb{Z}(G)$ onto $\bar{H} = H/\mathbb{Z}(H)$, and an isomorphism θ of the subgroup G' onto H' such that the following diagram is commutative

$$
\begin{array}{c}
\bar{G} \times \bar{G} \xrightarrow{a_G} G' \\
\downarrow \phi \times \phi \quad \quad \quad \downarrow \theta \\
\bar{H} \times \bar{H} \xrightarrow{a_H} H'.
\end{array}
$$

a_G and a_H are canonical commutator maps.

Before going to the classification, we exhibit some examples.
For any positive integer \(r \geq 1 \) and prime \(p > 2 \), consider the following group constructed by N. Ito.

\[
G_r = \left\langle a_1, \ldots, a_{r+1} \mid [a_i, a_j] = b_{ij}, [a_k, b_{ij}] = 1, \right.
\]
\[
a_i^p = a_{r+1}^p = b_{ij}^p = 1, 1 \leq i < j \leq r + 1, 1 \leq k \leq r + 1 \right\rangle.
\]
For any positive integer $r \geq 1$ and prime $p > 2$, consider the following group constructed by N. Ito.

$$G_r = \langle a_1, \ldots, a_{r+1} \mid [a_i, a_j] = b_{ij}, [a_k, b_{ij}] = 1, a_i^p = a_{r+1}^p = b_{ij}^p = 1, 1 \leq i < j \leq r + 1, 1 \leq k \leq r + 1 \rangle.$$

The group G_r is of conjugate type $(1, p^r)$ and nilpotency class 2.
For any positive integer \(r \geq 1 \) and prime \(p > 2 \), consider the following group constructed by N. Ito.

\[
G_r = \langle a_1, \ldots, a_{r+1} \mid [a_i, a_j] = b_{ij}, [a_k, b_{ij}] = 1, a_i^p = a_{r+1}^p = b_{ij}^p = 1, 1 \leq i < j \leq r + 1, 1 \leq k \leq r + 1 \rangle.
\]

The group \(G_r \) is of conjugate type \((1, p^r) \) and nilpotency class 2.

For any \(k \geq 1 \), the group \(U_3(p^n) \) of upper unitriangular matrices over a field of order \(p^n \) is of conjugate type \((1, p^n) \) and class 2.
For any positive integer \(r \geq 1 \) and prime \(p > 2 \), consider the following group constructed by N. Ito.

\[
G_r = \langle a_1, \ldots, a_{r+1} \mid [a_i, a_j] = b_{ij}, [a_k, b_{ij}] = 1, a_i^p = a_{r+1}^p = b_{ij}^p = 1, 1 \leq i < j \leq r + 1, 1 \leq k \leq r + 1 \rangle.
\]

The group \(G_r \) is of conjugate type \((1, p^r)\) and nilpotency class 2.

For any \(k \geq 1 \), the group \(U_3(p^n) \) of upper unitriangular matrices over a field of order \(p^n \) is of conjugate type \((1, p^n)\) and class 2. This is a Camina special \(p \)-group.
For any positive integer \(r \geq 1 \) and prime \(p > 2 \), consider the following group constructed by N. Ito.

\[
G_r = \langle a_1, \ldots, a_{r+1} | [a_i, a_j] = b_{ij}, [a_k, b_{ij}] = 1, \\
a_i^p = a_{r+1}^p = b_{ij}^p = 1, 1 \leq i < j \leq r + 1, 1 \leq k \leq r + 1 \rangle.
\]

The group \(G_r \) is of conjugate type \((1, p^r) \) and nilpotency class 2.

For any \(k \geq 1 \), the group \(U_3(p^n) \) of upper unitriangular matrices over a field of order \(p^n \) is of conjugate type \((1, p^n) \) and class 2. This is a Camina special \(p \)-group.

The family of Camina special \(p \)-groups \(G \), with \(|G'| = p^k \) provides a huge source of examples of groups of conjugate type \((1, p^k) \) and class 2.
On the other hand examples for class 3 are very rare.
On the other hand examples for class 3 are very rare.

Only examples known are for p-group of conjugate type $(1, p^n)$ and nilpotency class 3, where n is even integer.
On the other hand examples for class 3 are very rare.

Only examples known are for p-group of conjugate type $(1, p^n)$ and nilpotency class 3, where n is even integer.

These examples were appeared in the construction of certain Camina p-groups of class 3 by Dark and Scoppola in 1996.
On the other hand examples for class 3 are very rare.

Only examples known are for p-group of conjugate type $(1, p^n)$ and nilpotency class 3, where n is even integer.

These examples were appeared in the construction of certain Camina p-groups of class 3 by Dark and Scoppola in 1996.

It can be showed that; for fix n, the p-group of conjugate type $(1, p^{2n})$ and class 3, constructed by Dark and Scoppola is isomorphic to $\mathcal{H}_n/Z(\mathcal{H}_n)$, where \mathcal{H}_n can be presented as below;

\[
\mathcal{H}_n = \left\{ \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
a & 1 & 0 & 0 & 0 \\
c & b & 1 & 0 & 0 \\
d & ab - c & a & 1 & 0 \\
f & e & c & b & 1
\end{bmatrix} : a, b, c, d, e, f \in \mathbb{F}_{p^n} \right\}.
\]
Now, we come to the classification of p-groups having exactly 2 class sizes.
Now, we come to the classification of p-groups having exactly 2 class sizes.

Theorem (K. Ishikawa, 1999)
A finite p-group G has exactly two conjugacy class sizes 1 and p if and only if G is isoclinic to an **extra special p-Group**.
Theorem (K. Ishikawa, 1999)

- Let \(G \) be a finite \(p \)-group of conjugate type \((1, p^2)\) and nilpotency class 2. Then \(G \) is isoclinic to one of the following:

1. A Camina group \(H \) with \(|H'| = p^2\).
2. \(G_{2} = \langle a_1, a_2, a_3 | [a_i, a_j] = b_{ij}, [a_k, b_{ij}] = 1, a_{p^i} = b_{p^i} = c_{p^i} = 1, 1 \leq i < j \leq 3, 1 \leq k \leq 3 \rangle \).

Let \(G \) be a finite \(p \)-group of conjugate type \((1, p^2)\) and nilpotency class 3. Then \(G \) is isoclinic to \(W \), where \(W \) can be presented as,

\[W = \langle a_1, a_2 | [a_1, a_2] = b, [a_i, b] = c_i, a_{p^i} = b_{p^i} = c_{p^i} = 1, i = 1, 2 \rangle. \]

Note that \(W \) is isomorphic to the group constructed by Dark and Scoppola, \(H_n/Z(H_n) \); for \(n = 1 \).
Theorem (K. Ishikawa, 1999)

Let G be a finite p-group of conjugate type $(1, p^2)$ and nilpotency class 2. Then G is isoclinic to one of the following;

Let G be a finite p-group of conjugate type $(1, p^2)$ and nilpotency class 3. Then G is isoclinic to W, where W can be presented as,

$$W = \langle a_1, a_2 | [a_1, a_2] = b, [a_i, b] = c_i, a_{p^i} = b_{p^i} = c_{p^i} = 1, i = 1, 2 \rangle.$$

Note that W is isomorphic to the group constructed by Dark and Scoppola, $H_n / \mathbb{Z}(H_n)$; for $n = 1$.

T. K. Naik (Groups St Andrews 2017, Birmingham)
On p-groups . . . 12/08/2017 (11 A.M) 15 / 21
Let G be a finite p-group of conjugate type $(1, p^2)$ and nilpotency class 2. Then G is isoclinic to one of the following:

2. G_r, for $r = 2$.

$$G_2 = \langle a_1, a_2, a_3 \mid [a_i, a_j] = b_{ij}, [a_k, b_{ij}] = 1, a_i^p = a_3^p = b_{ij}^p = 1, 1 \leq i < j \leq 3, 1 \leq k \leq 3 \rangle.$$
Theorem (K. Ishikawa, 1999)

Let G be a finite p-group of conjugate type $(1, p^2)$ and nilpotency class 2. Then G is isoclinic to one of the following:

2. G_r, for $r = 2$.

\[G_2 = \langle a_1, a_2, a_3 \mid [a_i, a_j] = b_{ij}, [a_k, b_{ij}] = 1, a_i^p = a_3^p = b_{ij}^p = 1, 1 \leq i < j \leq 3, 1 \leq k \leq 3 \rangle. \]

Let G be a finite p-group of conjugate type $(1, p^2)$ and nilpotency class 3. Then G is isoclinic to W, where W can be presented as,

\[W = \langle a_1, a_2 \mid [a_1, a_2] = b, [a_i, b] = c_i, a_i^p = b^p = c_i^p = 1, i = 1, 2 \rangle. \]
Theorem (K. Ishikawa, 1999)

Let G be a finite p-group of conjugate type $(1, p^2)$ and nilpotency class 2. Then G is isoclinic to one of the following:

2. G_r, for $r = 2$.

$$G_2 = \langle a_1, a_2, a_3 \mid [a_i, a_j] = b_{ij}, [a_k, b_{ij}] = 1, a_i^p = a_3^p = b_{ij}^p = 1, 1 \leq i < j \leq 3, 1 \leq k \leq 3 \rangle.$$

Let G be a finite p-group of conjugate type $(1, p^2)$ and nilpotency class 3. Then G is isoclinic to W, where W can be presented as,

$$W = \langle a_1, a_2 \mid [a_1, a_2] = b, [a_i, b] = c_i, a_i^p = b^p = c_i^p = 1, i = 1, 2 \rangle.$$

Note that W is isomorphic to the the group constructed by Dark and Scoppola, $\mathcal{H}_n/Z(\mathcal{H}_n)$; for $n = 1$.

Theorem(Tushar K. Naik, Manoj K. Yadav (2017))

Let G be a finite p-group of conjugate type $\{1, p^3\}$, $p > 2$. Then nilpotency class of G is 2.
Theorem (Tushar K. Naik, Manoj K. Yadav (2017))
Let G be a finite p-group of conjugate type $\{1, p^3\}$, $p > 2$. Then nilpotency class of G is 2. Moreover G is isoclinic to one of following groups:
Theorem (Tushar K. Naik, Manoj K. Yadav (2017))
Let G be a finite p-group of conjugate type $\{1, p^3\}$, $p > 2$. Then nilpotency class of G is 2. Moreover G is isoclinic to one of following groups:

- A finite Camina p-group of nilpotency class 2 with commutator subgroup of order p^3;
Theorem (Tushar K. Naik, Manoj K. Yadav (2017))

Let G be a finite p-group of conjugate type $\{1, p^3\}$, $p > 2$. Then nilpotency class of G is 2. Moreover G is isoclinic to one of following groups:

- A finite Camina p-group of nilpotency class 2 with commutator subgroup of order p^3;
- The group G_r, for $r = 3$;

$$G_3 = \left\langle a_1, \ldots, a_4 \mid [a_i, a_j] = b_{ij}, [a_k, b_{ij}] = 1, a_i^p = a_4^p = b_{ij}^p = 1, 1 \leq i < j \leq 4, 1 \leq k \leq 4 \right\rangle.$$
Theorem (Tushar K. Naik, Manoj K. Yadav (2017))

Let G be a finite p-group of conjugate type $\{1, p^3\}$, $p > 2$. Then nilpotency class of G is 2. Moreover, G is isoclinic to one of the following groups:

- A finite Camina p-group of nilpotency class 2 with commutator subgroup of order p^3;
- The group G_r, for $r = 3$;

$$G_3 = \langle a_1, \ldots, a_4 \mid [a_i, a_j] = b_{ij}, [a_k, b_{ij}] = 1, a_i^p = a_4^p = b_{ij}^p = 1, 1 \leq i < j \leq 4, 1 \leq k \leq 4 \rangle.$$

- The quotient group G_3/M, where M is a normal subgroup of G_3 given by $M = \langle [a_1, a_2][a_3, a_4] \rangle$;
Theorem (Tushar K. Naik, Manoj K. Yadav (2017))

Let \(G \) be a finite \(p \)-group of conjugate type \(\{1, p^3\} \), \(p > 2 \). Then nilpotency class of \(G \) is 2. Moreover \(G \) is isoclinic to one of following groups:

- A finite Camina \(p \)-group of nilpotency class 2 with commutator subgroup of order \(p^3 \);
- The group \(G_r \), for \(r = 3 \);

\[
G_3 = \langle a_1, \ldots, a_4 \mid [a_i, a_j] = b_{ij}, [a_k, b_{ij}] = 1, a_i^p = a_4^p = b_{ij}^p = 1, 1 \leq i < j \leq 4, 1 \leq k \leq 4 \rangle.
\]

- The quotient group \(G_3/M \), where \(M \) is a normal subgroup of \(G_3 \) given by \(M = \langle [a_1, a_2][a_3, a_4] \rangle \);
- The quotient group \(G_3/N \), where \(N \) is a normal subgroup of \(G_3 \) given by \(N = \langle [a_1, a_2][a_3, a_4], [a_1, a_3][a_2, a_4]^t \rangle \), with \(t \) any fixed integer non-square modulo \(p \).
Let \hat{G}_n denote the family consisting of $(n + 1)$-generator non-abelian special p-groups G of order $p^{(n+1)(n+2)/2}$. Let \hat{G}_3 denote the subfamily of \hat{G}_3 consisting of 2-groups of exponent 4.
Let \hat{G}_n denote the family consisting of $(n + 1)$-generator non-abelian special p-groups G of order $p^{(n+1)(n+2)/2}$. Let \hat{G}_3 denote the subfamily of \hat{G}_3 consisting of 2-groups of exponent 4.

Then it follows that all groups of this family are of conjugate type $\{1, 2^3\}$. It also turns out that any two groups in \hat{G}_3 are isoclinic.
Let \hat{G}_n denote the family consisting of $(n + 1)$-generator non-abelian special p-groups G of order $p^{(n+1)(n+2)/2}$. Let \hat{G}_3 denote the subfamily of \hat{G}_3 consisting of 2-groups of exponent 4.

Then it follows that all groups of this family are of conjugate type $\{1, 2^3\}$. It also turns out that any two groups in \hat{G}_3 are isoclinic.

For simplicity of notation, we assume that a group G from \hat{G}_3 is minimally generated by the set $\{a, b, c, d\}$.
Theorem (Tushar K. Naik, Manoj K. Yadav, 2017)
Let G be a finite 2-group of conjugate type $\{1, 8\}$ and nilpotency class 2. Then G is isoclinic to one of the following groups:

(i) A finite Camina 2-group with commutator subgroup of order 8;
(ii) A fixed group G in the family \hat{G}_3, defined above;
(iii) The quotient group G/M, where M is a normal subgroup of G such that $M = \langle [a, b] [c, d] \rangle$;
(iv) The quotient group G/N, where N is a normal subgroup of G such that $N = \langle [a, b] [c, d], [a, c] [b, d] [c, d] \rangle$.

12/08/2017 (11 A.M) 18 / 21
Theorem (Tushar K. Naik, Manoj K. Yadav, 2017)

Let G be a finite 2-group of conjugate type $\{1, 8\}$ and nilpotency class 2. Then G is isoclinic to one of the following groups:

(i) A finite Camina 2-group with commutator subgroup of order 8;

(ii) A fixed group G in the family \hat{G}_3, defined above;

(iii) The quotient group G/M, where M is a normal subgroup of G such that $M = \langle [a, b][c, d] \rangle$;

(iv) The quotient group G/N, where N is a normal subgroup of G such that $N = \langle [a, b][c, d], [a, c][b, d][c, d] \rangle$.
Theorem (Tushar K. Naik, Manoj K. Yadav, 2017)
Let G be a finite 2-group of conjugate type $\{1, 8\}$ and nilpotency class 2. Then G is isoclinic to one of the following groups:

(i) A finite Camina 2-group with commutator subgroup of order 8;
(ii) A fixed group G in the family \hat{G}_3, defined above;
Theorem (Tushar K. Naik, Manoj K. Yadav, 2017)
Let G be a finite 2-group of conjugate type $\{1, 8\}$ and nilpotency class 2. Then G is isoclinic to one of the following groups:

(i) A finite Camina 2-group with commutator subgroup of order 8;
(ii) A fixed group G in the family \hat{G}_3, defined above;
(iii) The quotient group G/M, where M is a normal subgroup of G such that $M = \langle [a, b][c, d] \rangle$;
Theorem (Tushar K. Naik, Manoj K. Yadav, 2017)

Let G be a finite 2-group of conjugate type $\{1, 8\}$ and nilpotency class 2. Then G is isoclinic to one of the following groups:

(i) A finite Camina 2-group with commutator subgroup of order 8;
(ii) A fixed group \mathcal{G} in the family $\hat{\mathcal{G}}_3$, defined above;
(iii) The quotient group \mathcal{G}/M, where M is a normal subgroup of \mathcal{G} such that $M = \langle [a, b][c, d] \rangle$;
(iv) The quotient group \mathcal{G}/N, where N is a normal subgroup of \mathcal{G} such that $N = \langle [a, b][c, d], [a, c][b, d][c, d] \rangle$.

Let’s summarize the results on finite p-groups of conjugate type $(1, p^n)$.

- For $p = 2$, such groups have nilpotency class exactly 2.
Let’s summarize the results on finite p-groups of conjugate type $(1, p^n)$.

- For $p = 2$, such groups have nilpotency class exactly 2.
- For odd prime p, such groups can have nilpotency class 2 or 3.

All these information lead to the following natural questions.

Question 6
Does there exist a finite p-group of nilpotency class 3 and conjugate type $(1, p^n)$, for odd prime p and odd integer $n \geq 5$?

Question 7
For given even integer n, does there exist more groups of conjugate type $(1, p^n)$, other than the example constructed by Dark and Scoppola?
Let’s summarize the results on finite p-groups of conjugate type $(1, p^n)$.

- For $p = 2$, such groups have nilpotency class exactly 2.
- For odd prime p, such groups can have nilpotency class 2 or 3.
- For class 2, there are many known examples.

For class 3, there does not exist any p-group of conjugate type $(1, p^n)$, when $n = 1$ or 3.

For class 3, there is only one example known, that too when n is even.

All these information lead to the following natural questions.

Question 6
Does there exist a finite p-group of nilpotency class 3 and conjugate type $(1, p^n)$, for odd prime p and odd integer $n \geq 5$?

Question 7
For given even integer n, does there exist more groups of conjugate type $(1, p^n)$, other than the example constructed by Dark and Scoppola?
Let’s summarize the results on finite p-groups of conjugate type $(1, p^n)$.

- For $p = 2$, such groups have nilpotency class exactly 2.
- For odd prime p, such groups can have nilpotency class 2 or 3.
- For class 2, there are many known examples.
- For class 3, there does not exist any p-group of conjugate type $(1, p^n)$, when $n = 1$ or 3.
Let’s summarize the results on finite p-groups of conjugate type $(1, p^n)$.

- For $p = 2$, such groups have nilpotency class exactly 2.
- For odd prime p, such groups can have nilpotency class 2 or 3.
- For class 2, there are many known examples.
- For class 3, there does not exist any p-group of conjugate type $(1, p^n)$, when $n = 1$ or 3.
- For class 3, there is only one example known, that too when n is even.

All these information lead to the following natural questions.

Question 6

Does there exist a finite p-group of nilpotency class 3 and conjugate type $(1, p^n)$, for odd prime p and odd integer $n \geq 5$?

Question 7

For given even integer n, does there exist more groups of conjugate type $(1, p^n)$, other than the example constructed by Dark and Scoppola?
Let’s summarize the results on finite \(p \)-groups of conjugate type \((1, p^n)\).

- For \(p = 2 \), such groups have nilpotency class exactly 2.
- For odd prime \(p \), such groups can have nilpotency class 2 or 3.
- For class 2, there are many known examples.
- For class 3, there does not exist any \(p \)-group of conjugate type \((1, p^n)\), when \(n = 1 \) or 3.
- For class 3, there is only one example known, that too when \(n \) is even.

All these information lead to the following natural questions.

Question 6

Does there exist a finite \(p \)-group of nilpotency class 3 and conjugate type \((1, p^n)\), for odd prime \(p \) and odd integer \(n \geq 5 \)?

Question 7

For given even integer \(n \), does there exist more groups of conjugate type \((1, p^n)\), other than the example constructed by Dark and Scoppola?
Let’s summarize the results on finite p-groups of conjugate type $(1, p^n)$.

- For $p = 2$, such groups have nilpotency class exactly 2.
- For odd prime p, such groups can have nilpotency class 2 or 3.
- For class 2, there are many known examples.
- For class 3, there does not exist any p-group of conjugate type $(1, p^n)$, when $n = 1$ or 3.
- For class 3, there is only one example known, that too when n is even.

All these information lead to the following natural questions.

Question 6
Does there exist a finite p-group of nilpotency class 3 and conjugate type $\{1, p^n\}$, for odd prime p and odd integer $n \geq 5$?
Let’s summarize the results on finite p-groups of conjugate type $(1, p^n)$.

- For $p = 2$, such groups have nilpotency class exactly 2.
- For odd prime p, such groups can have nilpotency class 2 or 3.
- For class 2, there are many known examples.
- For class 3, there does not exist any p-group of conjugate type $(1, p^n)$, when $n = 1$ or 3.
- For class 3, there is only one example known, that too when n is even.

All these information lead to the following natural questions.

Question 6

Does there exist a finite p-group of nilpotency class 3 and conjugate type $\{1, p^n\}$, for odd prime p and odd integer $n \geq 5$?

Question 7

For given even integer n, does there exist more groups of conjugate type $(1, p^n)$, other than the example constructed by Dark and Scoppola?
Recently, we prove following as an answer to these problems.

Theorem (Naik, Kitture and Yadav)

Let p be an odd prime. Then the following holds;

There does not exist any p-group of conjugate type $\{1, p^n\}$ and nilpotency class 3, for odd integer n.

There exists a unique (up to isoclinism) p-group of conjugate type $(1, p^{2n})$ and class 3. In particular, it is isoclinic to the group constructed by Dark and Scoppola.
Recently, we prove following as an answer to these problems.

Theorem (Naik, Kitture and Yadav)

Let p be an odd prime. Then the following holds:

- There does not exist any p-group of conjugate type $\{1, p^n\}$ and nilpotency class 3, for odd integer n.
- There exists a unique (up to isoclinism) p-group of conjugate type $\{1, p^2n\}$ and class 3. In particular, it is isoclinic to the group constructed by Dark and Scoppola.
Recently, we prove following as an answer to these problems.

Theorem (Naik, Kitture and Yadav)
Let p be an odd prime. Then the following holds;

- There does not exist any p-group of conjugate type $\{1, p^n\}$ and nilpotency class 3, for odd integer n.

There exists a unique (up to isoclinism) p-group of conjugate type $(1, p^2n)$ and class 3. In particular, it is isoclinic to the group constructed by Dark and Scoppola.
Recently, we prove following as an answer to these problems.

Theorem (Naik, Kitture and Yadav)
Let p be an odd prime. Then the following holds;

- There does not exist any p-group of conjugate type $\{1, p^n\}$ and nilpotency class 3, for odd integer n.
- There exists a unique (up to isoclinism) p-group of conjugate type $(1, p^{2n})$ and class 3.
Recently, we prove following as an answer to these problems.

Theorem (Naik, Kitture and Yadav)
Let p be an odd prime. Then the following holds;

- There does not exist any p-group of conjugate type $\{1, p^n\}$ and nilpotency class 3, for odd integer n.
- There exists a unique (up to isoclinism) p-group of conjugate type $(1, p^{2n})$ and class 3.
- In particular, it is isoclinic to the group constructed by Dark and Scoppola.

K. Ishikawa, *Finite p-groups up to isoclinism, which have only two conjugacy lengths*, J. Algebra **220** (1999), 333-345.

K. Ishikawa, *On finite p-groups which have only two conjugacy lengths*, Israel J. Math. **129** (2002), 119-123.

Tushar Kanta Naik and Manoj Kumar Yadav, *Finite p-groups of conjugate type \{1, p^3\}* (Accepted in Journal of Group Theory).

K. Ishikawa, *Finite p-groups up to isoclinism, which have only two conjugacy lengths*. J. Algebra **220** (1999), 333-345.

Tushar Kanta Naik and Manoj Kumar Yadav, *Finite p-groups of conjugate type \(\{1, p^3\}\)*, (Accepted in Journal of Group Theory).

Thank You