The Strong Symmetric Genus of Almost All D-type Generalized Symmetric Groups

Michael A. Jackson

Department of Mathematics - Grove City College
majackson@gcc.edu

Groups St. Andrews
University of Birmingham
August, 2017
Strong Symmetric Genus

Definition

Given a finite group G, the smallest genus of any closed orientable topological surface on which G acts faithfully as a group of orientation preserving symmetries is called the **strong symmetric genus** of G.

If $\sigma_0(G) > 1$ for a finite group G, then $\sigma_0(G) \geq 1 + |G|/84$. We have equality if G is a Hurwitz group.
Strong Symmetric Genus

Definition

Given a finite group G, the smallest genus of any closed orientable topological surface on which G acts faithfully as a group of orientation preserving symmetries is called the strong symmetric genus of G.

- The strong symmetric genus of the group G is denoted $\sigma^0(G)$.
- If $\sigma^0(G) > 1$ for a finite group G, then $\sigma^0(G) \geq 1 + \frac{|G|}{84}$.
- We have equality if G is a Hurwitz group.
Known results on the strong symmetric genus

- All groups G such that $\sigma^0(G) \leq 25$ are known. [Broughton, 1991; May and Zimmerman, 2000 and 2005; Fieldsteel, Lindberg, London, Tran and Xu, (Advised by Breuer) 2008]

- For each positive integer n, there is exists a finite group G with $\sigma^0(G) = n$. [May and Zimmerman, 2003]
The strong symmetric genus is known for the following groups:

- $PSL_2(q)$ [Glover and Sjerve, 1985 and 1987]
- $SL_2(q)$ [Voon, 1993]
- the sporadic finite simple groups [Conder, Wilson and Woldar, 1992; Wilson, 1993, 1997 and 2001]
- alternating and symmetric groups [Conder, 1980 and 1981]
- the hyperoctahedral groups [J, 2004]
- the remaining finite Coxeter groups [J, 2007]
- the generalized symmetric groups of type $G(n,3)$ [J, 2010]
Generators and the Riemann-Hurwitz Equation

- If a finite group G has generators x and y of orders p and q respectively with xy having the order r, then we say that (x, y) is a (p, q, r) generating pair of G.

M. Jackson

Strong Symmetric Genus of D-type Groups
Generators and the Riemann-Hurwitz Equation

- If a finite group G has generators x and y of orders p and q respectively with xy having the order r, then we say that (x, y) is a (p, q, r) generating pair of G.
- For ease of comparison we will assume that $p \leq q \leq r$. Note that a (p, q, r) generating pair also yields a (q, p, r) generating pair and the like.
Generators and the Riemann-Hurwitz Equation

- If a finite group G has generators x and y of orders p and q respectively with xy having the order r, then we say that (x, y) is a (p, q, r) generating pair of G.
- For ease of comparison we will assume that $p \leq q \leq r$. Note that a (p, q, r) generating pair also yields a (q, p, r) generating pair and the like.
- The existence of a (p, q, r) generating pair gives a faithful orientation preserving action of the group G on a surface S.
Generators and the Riemann-Hurwitz Equation

- The existence of a \((p, q, r)\) generating pair gives a faithful orientation preserving action of the group \(G\) on a surface \(S\).
- This is done by realizing the group \(G\) as a quotient of the triangle group

\[
\Delta(p, q, r) = \langle x, y | x^p = y^q = (xy)^r = 1 \rangle.
\]
Generators and the Riemann-Hurwitz Equation

- The existence of a \((p, q, r)\) generating pair gives a faithful orientation preserving action of the group \(G\) on a surface \(S\).
- This is done by realizing the group \(G\) as a quotient of the triangle group

\[
\Delta(p, q, r) = \langle x, y | x^p = y^q = (xy)^r = 1 \rangle.
\]

- The genus of the surface \(S\) is then found from the Riemann-Hurwitz formula:

\[
\text{genus}(S) = 1 + \frac{|G|}{2} \left(1 - \frac{1}{p} - \frac{1}{q} - \frac{1}{r}\right).
\]
A \((p, q, r)\) generating pair of \(G\) is called a minimal generating pair if no generating pair for the group \(G\) gives an action on a surface of smaller genus.

For the groups we will be working with \(\sigma^0(G) \geq 2\) or equivalently any generating pair will be a \((p, q, r)\) generating pair with \(\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1\).
Minimal Generating Pairs

- A \((p, q, r)\) generating pair of \(G\) is called a minimal generating pair if no generating pair for the group \(G\) gives an action on a surface of smaller genus.

- For the groups we will be working with \(\sigma^0(G) \geq 2\) or equivalently any generating pair will be a \((p, q, r)\) generating pair with \(\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1\).

The Riemann-Hurwitz formula:

\[
\text{genus}(S) = 1 + \frac{|G|}{2} \left(1 - \frac{1}{p} - \frac{1}{q} - \frac{1}{r}\right).
\]
A Lemma by Singerman

Lemma (Singerman)

Let G be a finite group such that $\sigma^0(G) > 1$. If $|G| > 12(\sigma^0(G) - 1)$, then G has a (p, q, r) generating pair with

$$\sigma^0(G) = 1 + \frac{1}{2}|G| \cdot \left(1 - \frac{1}{p} - \frac{1}{q} - \frac{1}{r}\right).$$
A Lemma by Singerman

Lemma (Singerman)

Let G be a finite group such that $\sigma^0(G) > 1$. If $|G| > 12(\sigma^0(G) - 1)$, then G has a (p, q, r) generating pair with

$$\sigma^0(G) = 1 + \frac{1}{2}|G| \cdot \left(1 - \frac{1}{p} - \frac{1}{q} - \frac{1}{r}\right).$$

- Singerman’s Lemma implies that if G has a minimal (p, q, r) generating pair such that $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} \geq \frac{5}{6}$, then the strong symmetric genus is given by this generating pair.
- Since $\sigma^0(G) > 1$, we know that $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1$.

M. Jackson

Strong Symmetric Genus of D-type Groups
More on Singerman’s Lemma

- Recall: if G has a minimal (p, q, r) generating pair such that $\frac{5}{6} \leq \frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1$, then the strong symmetric genus is given by this generating pair.

- The triples of numbers (p, q, r) that fit this requirement are:
 - $(2, 3, r)$ for any $r \geq 7$.
 - $(2, 4, r)$ for $5 \leq r \leq 11$.
 - $(3, 3, r)$ for $r = 4$ or $r = 5$.
More on Singerman’s Lemma

- Recall: if G has a minimal (p, q, r) generating pair such that \(\frac{5}{6} \leq \frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1 \), then the strong symmetric genus is given by this generating pair.

- The triples of numbers (p, q, r) that fit this requirement are:
 - $(2, 3, r)$ for any $r \geq 7$.
 - $(2, 4, r)$ for $5 \leq r \leq 11$.
 - $(3, 3, r)$ for $r = 4$ or $r = 5$.

- The groups in this talk have S_n as a subgroup. So at least two numbers in the triple must be of even.

- The triples fitting both requirements are:
 - $(2, 3, r)$ for $r \geq 8$ even.
 - $(2, 4, r)$ for $5 \leq r \leq 11$.

M. Jackson
Strong Symmetric Genus of D-type Groups
Generalized Symmetric Groups

- $G(n, m) = \mathbb{Z}_m \wr S_n$ for $n > 1$ and $m \geq 1$.
Generalized Symmetric Groups

- $G(n, m) = \mathbb{Z}_m \wr S_n$ for $n > 1$ and $m \geq 1$.
- $G(n, m)$ is the smallest group of $n \times n$ matrices containing
 - the permutation matrices and
 - the diagonal matrices with entries in a multiplicative cyclic group of size m.
Generalized Symmetric Groups

- $G(n, m) = \mathbb{Z}_m \wr S_n$ for $n > 1$ and $m \geq 1$.
- $G(n, m)$ is the smallest group of $n \times n$ matrices containing
 - the permutation matrices and
 - the diagonal matrices with entries in a multiplicative cyclic group of size m.
- $G(n, 1)$ is the symmetric group S_n.
- $G(n, 2)$ is the hyperoctahedral group B_n.

Generalized Symmetric Groups

- $G(n, m) = \mathbb{Z}_m \wr S_n$ for $n > 1$ and $m \geq 1$.
- $G(n, m)$ is the smallest group of $n \times n$ matrices containing
 - the permutation matrices and
 - the diagonal matrices with entries in a multiplicative cyclic group of size m.
- $G(n, 1)$ is the symmetric group S_n.
- $G(n, 2)$ is the hyperoctahedral group B_n.
- The strong symmetric genus has been found for the groups:
 - $G(n, 1)$ [Conder, 1980]
 - $G(n, 2)$ and $G(n, 3)$ [J, 2004 and 2010]
 - $G(3, m)$, $G(4, m)$ and $G(5, m)$ [Ginter, Johnson, McNamara, 2008]
$D(n, m) = (\mathbb{Z}_m)^{n-1} \rtimes S_n$ for $n > 2$ and $m \geq 1$.
$D(n, m) = (\mathbb{Z}_m)^{n-1} \rtimes S_n$ for $n > 2$ and $m \geq 1$.

$D(n, m)$ is an index m subgroup of $G(n, m)$.
D-type Generalized Symmetric Groups

- $D(n, m) = (\mathbb{Z}_m)^{n-1} \rtimes S_n$ for $n > 2$ and $m \geq 1$.
- $D(n, m)$ is an index m subgroup of $G(n, m)$.
- $D(n, m)$ is the smallest group of $n \times n$ matrices containing
 - the permutation matrices and
 - the diagonal matrices with entries in a multiplicative cyclic group of size m each having determinant 1.
\[D(n, m) = (\mathbb{Z}_m)^{n-1} \rtimes S_n \text{ for } n > 2 \text{ and } m \geq 1. \]

- \(D(n, m) \) is an index \(m \) subgroup of \(G(n, m) \).
- \(D(n, m) \) is the smallest group of \(n \times n \) matrices containing
 - the permutation matrices and
 - the diagonal matrices with entries in a multiplicative cyclic group of size \(m \) each having determinant 1.

- The strong symmetric genus has been found for the groups \(D(n, 2) \) which are the finite Coxeter groups of type \(D \) [J, 2007]
- We will be looking at the groups \(D(n, m) \) for \(m > 2 \).
Notation for elements of $D(n, m)$

- Recall that the group $D(n, m) = (\mathbb{Z}_m)^{n-1} \rtimes S_n$.
- An element of $D(n, m)$ will be denoted by $[\sigma, a]$ where
 - σ is an element of S_n, and
 - a is an element of $(\mathbb{Z}_m)^{n-1}$, which we will think of as a list of n integers modulo m such that the sum of the list is congruent to 0 modulo m.
- Notice that multiplication in the group is given by
 \[
 [\sigma, a] \cdot [\tau, b] = [\sigma \cdot \tau, \tau^{-1}(a) + b]
 \]
 where τ^{-1} is acting on the list a and the addition is term by term modulo m.
Suppose that S_n is generated by two elements σ and τ such that

- The number $m > 2$ divides the order of σ, and
- σ has two fixed points.
- If m and n are even then σ must have a third fixed point.
New generators from old

Suppose that S_n is generated by two elements σ and τ such that

- The number $m > 2$ divides the order of σ, and
- σ has two fixed points.
- If m and n are even then σ must have a third fixed point.

Then $[\sigma, a]$ and $[\tau, b]$ generate $D(n, m)$ where

- b is a list of zeros,
- a is a list where one fixed point of σ has a 1 and the other fixed point has a -1,
- the rest of a is filled in so that the elements permuted by each cycle of σ add to zero modulo m and the elements permuted by each cycle of $\tau \cdot \sigma$ add to zero modulo m.
Suppose that S_n is generated by two elements σ and τ such that

- $3|m$, $9 \nmid m$, and the number $s = \frac{m}{3}$ divides the order of σ,
- τ has order 3, and
- both σ and τ have two fixed points.
- If m and n are even then σ must have a third fixed point.
Then $[\sigma, a]$ and $[\tau, b]$ generate $D(n, m)$ where

- a is a list where one fixed point of σ has a 3 and the other fixed point has a -3,

- b is a list where one fixed point of τ has an s and the other has a number $-s$, and

- the rest of a and b are filled in so that each of the following add to 0 modulo m:
 - the elements of a permuted by each cycle of σ
 - the elements of b permuted by each cycle of τ, and
 - the elements of $\sigma^{-1}(b) + a$ permuted by each cycle of $\tau \cdot \sigma$ add to zero modulo m.

M. Jackson

Strong Symmetric Genus of D-type Groups
Orders

- Given the σ and τ that generate S_n and satisfy the conditions from either of the past two slides
- the new elements that we created $[\sigma, a]$ and $[\tau, b]$ generate $D(n, m)$.
- In addition the orders of $[\sigma, a],[\tau, b]$ and

 $$[\tau, b] \cdot [\tau, b] = [\tau \cdot \sigma, \sigma^{-1}(b) + a]$$

 are the same as σ, τ and $\tau \cdot \sigma$, respectively.
Given an integer $m > 2$ define $r(m)$ using the following criteria:

- If $m = 3, 4, \text{ or } 6$, then $r(m) = 8$
- If $m = 12$, then $r(m) = 12$.
- If $3 | m$ but $9 \not| m$ then
 - let $r(m) = \frac{m}{3}$ for m even and $r(m) = \frac{2m}{3}$ for m odd.
- Otherwise let $r(m) = m$ for m even and $r(m) = 2m$ for m odd.
Given an integer $m > 2$ define $r(m)$ using the following criteria:

- If $m = 3, 4, \text{ or } 6$, then $r(m) = 8$
- If $m = 12$, then $r(m) = 12$
- If $3|m$ but $9 \nmid m$ then let $r(m) = \frac{m}{3}$ for m even and $r(m) = \frac{2m}{3}$ for m odd.
- Otherwise let $r(m) = m$ for m even and $r(m) = 2m$ for m odd.

Notice that

- for all m, $m|3r(m)$,
- if $3 \nmid m$ or $9|m$, then $m|r(m)$, and
- $r(m)$ is always even.
Conder’s Generators

We use Conder’s Papers “More on generators for alternating and symmetric groups” Quart. J. Math. Oxford (2), 32 (1981) 137-163. Using the coset diagrams from the paper, we see that given $m > 2$ there are generators σ and τ for all but finitely many symmetric groups S_n such that

- σ has order $r(m)$,
- τ has order 3,
- σ has three fixed points, and τ has two fixed points.
Conder’s Generators

Using the coset diagrams from the paper, we see that given $m > 2$ there are generators σ and τ for all but finitely many symmetric groups S_n such that

- σ has order $r(m),$
- τ has order 3,
- σ has three fixed points, and τ has two fixed points.

For a fixed m, this allows for the creation of a $(2, 3, r(m))$ generating pair for all but finitely many $D(n, m)$.

We are left to show that these generators are a minimal generating pair.
Other Generators

To claim that our generators are a minimal generating pair, we need to show that there cannot be a generating pair with a better \((p, q, r)\) triple.
Other Generators

- To claim that our generators are a minimal generating pair, we need to show that there cannot be a generating pair with a better \((p, q, r)\) triple.
- If any prime power \(p^i\) which divides \(m\) does not divide \(q\) or \(r\), then \(D(n, m)\) cannot have a \((2, q, r)\) generating pair.
To claim that our generators are a minimal generating pair, we need to show that there cannot be a generating pair with a better \((p, q, r)\) triple.

If any prime power \(p^i\) which divides \(m\) does not divide \(q\) or \(r\), then \(D(n, m)\) cannot have a \((2, q, r)\) generating pair.

The best (hyperbolic) triple not of the form \((2, q, r)\) where two of the three numbers are even is \((3, 4, 4)\).

Notice that

\[
\frac{1}{2} + \frac{1}{3} + \frac{1}{r(m)} > \frac{5}{6} = \frac{1}{3} + \frac{1}{4} + \frac{1}{4}.
\]
Exceptions

- The triples left that could be better are \((2, q, r)\) with \(m|qr\) and \((q, r) = 1\).
Exceptions

- The triples left that could be better are \((2, q, r)\) with \(m \mid qr\) and \((q, r) = 1\).
- If \(q \leq r\) and \(\frac{1}{2} + \frac{1}{q} + \frac{1}{r} < 1\), the triples to consider are \((2, 4, r)\) for \(r \geq 5\).
Exceptions

- The triples left that could be better are \((2, q, r)\) with \(m \mid qr\) and \((q, r) = 1\).
- If \(q \leq r\) and \(\frac{1}{2} + \frac{1}{q} + \frac{1}{r} < 1\), the triples to consider are \((2, 4, r)\) for \(r \geq 5\).
- Checking sums of reciprocals leaves two cases,
 - \(m = 20\) and the triple \((2, 4, 5)\), and
 - \(m = 28\) and the triple \((2, 4, 7)\).
Exceptions

- The triples left that could be better are \((2, q, r)\) with \(m|qr\) and \((q, r) = 1\).
- If \(q \leq r\) and \(\frac{1}{2} + \frac{1}{q} + \frac{1}{r} < 1\), the triples to consider are \((2, 4, r)\) for \(r \geq 5\).
- Checking sums of reciprocals leaves two cases,
 - \(m = 20\) and the triple \((2, 4, 5)\), and
 - \(m = 28\) and the triple \((2, 4, 7)\).
- It turns out that in these two cases the \((2, 4, r)\) triple has a generating pair for all but finitely many cases.
Exceptions - Solved

- We used Brett Everitt’s paper "Permutation Representations of the (2, 4, r) triangle groups."
We used Brett Everitt’s paper ”Permutation Representations of the $(2, 4, r)$ triangle groups.

This paper does not consider the case $(2, 4, 5)$ since that work had been done earlier by Graham Higman.
Exceptions - Solved

- We used Brett Everitt’s paper ”Permutation Representations of the (2, 4, r) triangle groups.
- This paper does not consider the case (2, 4, 5) since that work had been done earlier by Graham Higman.
- With a slight modification to the coset diagrams in this paper and a similar process to what we did in the (2, 3, r(m)) case, we create a (2, 4, 7)-generating pair for all but finitely many of the $D(n, 28)$ groups.
Exceptions - Solved

- This leaves just the case where $m = 20$.
- The coset diagrams for the $(2, 4, 5)$-generating pairs for all but finitely many of the groups S_n was unpublished work.
Exceptions - Solved

- This leaves just the case where $m = 20$.
- The coset diagrams for the $(2, 4, 5)$-generating pairs for all but finitely many of the groups S_n was unpublished work.
- Therefore we created our own collection of coset diagrams which give appropriate generators for all but finitely many S_n.
- As in earlier cases this $(2, 4, 5)$-generating pair of S_n can be modified to be a $(2, 4, 5)$-generating pair of $D(n, 20)$.
Theorem

Given a fixed $m > 2$, where m is neither 20 or 28, for all but finitely many positive integers n, the D-type generalized symmetric group $D(n, m)$ has a $(2, 3, r(m))$-minimal generating pair. In addition all but finitely many of the groups $D(n, 20)$ have a $(2, 4, 5)$-minimal generating pair and all but finitely many of the groups $D(n, 28)$ have a $(2, 4, 7)$-minimal generating pair.
Theorem

Given a fixed $m > 2$, where m is neither 20 or 28, for all but finitely many positive integers n

$$\sigma^0(D(n, m)) = \frac{n!m^{n-1}(r(m) - 6)}{12r(m)} + 1.$$

In addition for all but finitely many positive integers n

$$\sigma^0(D(n, 20)) = \frac{n!m^{n-1}}{40} + 1 \text{ and } \sigma^0(D(n, 28)) = \frac{3n!m^{n-1}}{56} + 1.$$