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Blocks

• G : a finite group
• p: a prime dividing |G |
• R: a field of characteristic p or a p-adic ring (e.g. the p-adic integers).

Block decomposition of the group algebra

RG ∼= B0 × . . .× Bn

where each Bi is an indecomposable R-algebra. The Bi are called blocks.

Defect groups
To each block Bi we assign a defect group Di 6 G .

• Di is a p-group, unique up to conjugation in G .
• Defining property: Induction and restriction induce a “separable equivalence”

mod -RDi � mod -Bi

How we look at blocks
• When we say: “B is a block” we mean: “B is a block of RG for some group G ”.
• What can be said about all blocks that share a given defect group D?



Blocks

• G : a finite group
• p: a prime dividing |G |
• R: a field of characteristic p or a p-adic ring (e.g. the p-adic integers).

Block decomposition of the group algebra

RG ∼= B0 × . . .× Bn

where each Bi is an indecomposable R-algebra. The Bi are called blocks.

Defect groups
To each block Bi we assign a defect group Di 6 G .

• Di is a p-group, unique up to conjugation in G .
• Defining property: Induction and restriction induce a “separable equivalence”

mod -RDi � mod -Bi

How we look at blocks
• When we say: “B is a block” we mean: “B is a block of RG for some group G ”.
• What can be said about all blocks that share a given defect group D?



Blocks

• G : a finite group
• p: a prime dividing |G |
• R: a field of characteristic p or a p-adic ring (e.g. the p-adic integers).

Block decomposition of the group algebra

RG ∼= B0 × . . .× Bn

where each Bi is an indecomposable R-algebra. The Bi are called blocks.

Defect groups
To each block Bi we assign a defect group Di 6 G .

• Di is a p-group, unique up to conjugation in G .

• Defining property: Induction and restriction induce a “separable equivalence”

mod -RDi � mod -Bi

How we look at blocks
• When we say: “B is a block” we mean: “B is a block of RG for some group G ”.
• What can be said about all blocks that share a given defect group D?



Blocks

• G : a finite group
• p: a prime dividing |G |
• R: a field of characteristic p or a p-adic ring (e.g. the p-adic integers).

Block decomposition of the group algebra

RG ∼= B0 × . . .× Bn

where each Bi is an indecomposable R-algebra. The Bi are called blocks.

Defect groups
To each block Bi we assign a defect group Di 6 G .

• Di is a p-group, unique up to conjugation in G .
• Defining property: Induction and restriction induce a “separable equivalence”

mod -RDi � mod -Bi

How we look at blocks
• When we say: “B is a block” we mean: “B is a block of RG for some group G ”.
• What can be said about all blocks that share a given defect group D?



Blocks

• G : a finite group
• p: a prime dividing |G |
• R: a field of characteristic p or a p-adic ring (e.g. the p-adic integers).

Block decomposition of the group algebra

RG ∼= B0 × . . .× Bn

where each Bi is an indecomposable R-algebra. The Bi are called blocks.

Defect groups
To each block Bi we assign a defect group Di 6 G .

• Di is a p-group, unique up to conjugation in G .
• Defining property: Induction and restriction induce a “separable equivalence”

mod -RDi � mod -Bi

How we look at blocks
• When we say: “B is a block” we mean: “B is a block of RG for some group G ”.
• What can be said about all blocks that share a given defect group D?



Tame blocks

For this slide only, let R be an alg. closed field of characteristic p > 0.

Defect groups determine “representation type”
If B is a block with defect group D.

• D cyclic: B is of finite representation type (well understood).
• p = 2, D (semi-)dihedral or quaternion: tame representation type
( we call B a tame block).

• All other D: wild representation type (“representations are unclassifiable”).

Indecomposable representations of tame blocks can in principle be classified (in each
dimension they split up into finitely many 1-parameter families).

Classical results on tame blocks
• Brauer & Olsson studied the character theory of tame blocks (number of
characters, their height, etc.).

• Erdmann classified all “algebras of (semi-)dihedral or quaternion type”. This class
of algebras

• is defined in representation theoretic terms. Defining properties: symmetric,
indecomposable, tame rep. type, non-singular Cartan matrix and conditions on the
shape of its “stable Auslander-Reiten components”.

• contains all tame blocks, but also algebras which aren’t blocks.
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Equivalences of algebras

Let A be a symmetric R-algebra which is free and finitely generated as an R-module.

Categories associated to an algebra...

• mod -A: category of finitely generated A-modules. (an “abelian category”)
• mod-A = mod -A/{ projectives }: stable category (a “triangulated category”)
• D(A): the derived category. Constructed from the category of complexes of

A-modules by factoring out null-homotopic chain maps, and then localizing at
quasi-isomorphisms. (a “triangulated category”)

...and the notions of equivalence that come with them
Let A and B be two R-algebras (conditions as above). We call A and B

Morita equivalent derived equivalent stably equivalent
if if if

mod -A ' mod -B =⇒ D(A) ' D(B) =⇒ mod-A ' mod-B

where the equivalences are equivalences of abelian respectively triangulated categories.

And an equivalence just for blocks
Two blocks A and B with a common defect group D can also be Puig equivalent,
which is even stronger than merely being Morita equivalent.
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Finiteness conjectures

Assume R is an algebraically closed field or a p-adic ring with algebraically closed
residue field.

Donovan’s conjecture and Puig’s conjecture
For a fixed finite p-group D, there are only finitely many blocks with defect group D
up to

• Morita equivalence (Donovan’s conjecture)
• Puig equivalence (Puig’s conjecture)

Possible variations
• Usually, one takes R to be a field. But these conjectures also make sense (and are
stronger) over a p-adic ring, assuming R is “big enough”.

• One can also consider finiteness up to derived or stable equivalence.

What is known?
• Puig’s and Donovan’s conjectures are true for blocks with a cyclic defect group.
• Donovan conjecture is true for the defect groups C2m × C2m , C2m × C2m × C2
and all elementary abelian 2-groups (Eaton-Kessar-Külshammer-Sambale).

• None of this is completely settled for tame blocks!
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Donovan’s conjecture for tame blocks

Erdmann’s classification =⇒ Donovan conjecture over a field for most tame blocks
(except quaternion defect).

Question
Let R be a p-adic ring, π ∈ R a prime element. Assume R/πR is algebraically closed.
Given two bocks A and B, is the following true?

A/πA ∼Morita B/πB
?

=⇒ A ∼Morita B (?)

If this is true for some class of blocks, then Donovan conjecture for this class over R
follows from Donovan over R/πR.

Theorem (E)
(?) is true for all blocks of dihedral defect, and blocks of quaternion defect with three
isomorphism classes of simple modules.

Remark
• Part of the Q8-case was already settled by Holm-Kessar-Linckelmann.
• The only blocks of quaternion defect where (?) is open are those with two simple
modules. That is exactly where Donovan conjecture is as yet unsolved.
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Lifting to a p-adic ring (a rough sketch of how (?) is proved)

Let R be a p-adic ring, π ∈ R a prime and k = R/πR.

• When certain invariants of a block B (the “decomposition numbers”) are 6 1,
then there is a good chance of describing all R-algebras A (having some
properties known to hold for block algebras) with A/πA ∼Morita B/πB. (Plesken)

• Given two k-algebras C ∼derived D, then there is a bijection between

R-algebras A with an isomorphism A/πA
∼−→ C

and

R-algebras B with an isomorphism B/πB
∼−→ D

which is well-behaved.
• Conclusion: The property (?), A/πA ∼Morita B/πB implies A ∼Morita B, is
essentially a property of the derived equivalence class of A/πA. We just need to
prove it for one representative to which the “decomposition numbers
6 1”-methods apply and show uniqueness there.

Remark
This method also allowed to show that certain algebras in Erdmann’s classification do
not occur as blocks. Now we know exactly which algebras occur as blocks with
dihedral defect groups.
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prove it for one representative to which the “decomposition numbers
6 1”-methods apply and show uniqueness there.

Remark
This method also allowed to show that certain algebras in Erdmann’s classification do
not occur as blocks. Now we know exactly which algebras occur as blocks with
dihedral defect groups.



Self-equivalences

For a block B we have a chain of groups of self-equivalences

{Morita self-eq.} −→ {“standard” derived self-eq.} −→ {stable self-eq. (of “Morita type”)}

These are induced by tensoring with bimodules respectively a complex of bimodules.

Idea
A possible approach to Puig’s conjecture for tame blocks is to lift stable equivalences
(with extra structure) to Morita equivalences. The extra structure will ensure that the
Morita equivalence is in fact a Puig equivalence.

Problem
What do the above groups of self-equivalences look like?
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Derived self-equivalences for tame blocks

Remark: τ -tilting theory (Adachi-Iyama-Reiten)
The problem reduces to describing all “tilting complexes” over tame blocks. Among
these “tilting complexes”, those of length two are parametrised by a class of modules
(in the case of a block, or, a symmetric algebra):

{ 2-term tilting complexes } ←→ { support τ -tilting modules }

Theorem (E-Janssens-Raedschelders)
Let A be a finite-dimensional algebra, let z ∈ Rad(A) be a central element. Then

{ support τ -tilting modules over A } ←→ { support τ -tilting modules over A/zA }

This reduces the determination of 2-term tilting complexes over tame blocks to an
(easy) classification problem of a class of modules over much smaller “string algebras”.

Conclusion
In the situation of tame blocks, this is enough to give generators for the groups of
(“standard”) derived self-equivalences (Aihara-Mizuno).

Question
Can we describe the group of stable self-equivalences of “Morita type” of tame blocks?
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Thank you for your attention!


