Talk in Birmingham

Groups St Andrews 2017 in Birmingham

A generalization of the Hall-Witt identity

Boaz Cohen School of Computer Sciences The Academic College of Tel-Aviv, Israel

I'm grateful to

- Marcel Herzog
- Patrizia Longobardi
- Mercede Maj

for drawing my attention to this interesting problem.

My paper was accepted for publication by the *Israel Journal of Mathematics*.

The source of our inspiration for this research was the following paragraph from Isaacs' book:

"An amazing commutator formula is the Hall-Witt identity:

$$[[x_3, x_1^{-1}], x_2]^{x_1}[[x_1, x_2^{-1}], x_3]^{x_2}[[x_2, x_3^{-1}], x_1]^{x_3} = 1,$$

which holds for any three elements of every group... One can think of the Hall-Witt formula as a kind of three-variable version of the much more elementary two-variable identity, $[x_1, x_2][x_2, x_1] = 1$. This observation hints at the possibility that a corresponding four-variable formula might exist, but if there is such a four-variable identity, it has yet to be discovered."

- Martin Isaacs, Finite Group Theory, page 125

If we wish to generalize the Hall-Witt identity, the natural question is:

What do we mean by a generalization of the Hall-Witt identity?

We derived our approach to this problem from the structure of the Hall-Witt identity:

$$[[x_3, x_1^{-1}], x_2]^{x_1}[[x_1, x_2^{-1}], x_3]^{x_2}[[x_2, x_3^{-1}], x_1]^{x_3} = 1.$$

This identity consists of three factors, the first one, or the **generator** of the identity, being $[[x_3, x_1^{-1}], x_2]^{x_1}$ and the next two factors are obtained by applying the permutations $\sigma = (1 \ 2 \ 3)$ and σ^2 to the indices of the generator, respectively. Indeed, we have

$$[[x_{3}, x_{1}^{-1}], x_{2}]^{x_{1}} \xrightarrow{\sigma = (1 \ 2 \ 3)} [[x_{\sigma(3)}, x_{\sigma(1)}^{-1}], x_{\sigma(2)}]^{x_{\sigma(1)}} = [[x_{1}, x_{2}^{-1}], x_{3}]^{x_{2}}$$

$$\sigma = (1 \ 2 \ 3)$$

$$[[x_{\sigma(1)}, x_{\sigma(2)}^{-1}], x_{\sigma(3)}]^{x_{\sigma(2)}} = [[x_{2}, x_{3}^{-1}], x_{1}]^{x_{3}}$$

Thus, denoting the generator of the Hall-Witt identity by W, we may write the identity in the following form:

$$W(\sigma \cdot W)(\sigma^2 \cdot W) = 1$$

where

$$\sigma \cdot \mathbf{W} = [[x_{\sigma(3)}, x_{\sigma(1)}^{-1}], x_{\sigma(2)}]^{x_{\sigma(1)}}$$

and

$$\sigma^{2} \cdot \mathbf{W} = [[x_{\sigma^{2}(3)}, x_{\sigma^{2}(1)}^{-1}], x_{\sigma^{2}(2)}]^{x_{\sigma^{2}(1)}}$$

In the spirit of this example, we defined a **broad generalization** of the Hall-Witt identity, using the language of Free Groups.

5 / 27

Let $\Sigma_n = \{x_1, x_2, \dots, x_n\}$ be a finite set of symbols, called an **alphabet**. By a **word** over the alphabet Σ_n we mean any finite sequence of elements, which can be written from the symbols of $\Sigma_n \cup \Sigma_n^{-1}$, including the empty word 1, where $\Sigma_n^{-1} = \{x_1^{-1}, x_2^{-1}, \dots, x_n^{-1}\}$.

We shall denote by Σ_n^* the **free group** generated by Σ_n . This group consists of *all* words which can be built over the alphabet Σ_n . The operation in this group is the **concatenation**, i.e. appending the second factor to the first one. Two words are different, unless their equality follows from the group axioms. For example,

$$xx^{-1} = x^{-1}x = 1$$
 but $x_1x_2 = x_1x_3x_3^{-1}x_2 \neq x_2x_1$.

The "broad generalization" of the Hall-Witt identity are words $\mathrm{W}\in\Sigma_n^*$ which satisfy the identity

(*)
$$W_{\sigma} := W(\sigma \cdot W)(\sigma^2 \cdot W) \cdots (\sigma^{k-1} \cdot W) = 1,$$

where $\sigma \in S_n$ of order k and σ^j act on W by permuting the indices of the elements in W.

Such words W will be called words which satisfy the *Hall-Witt property* with respect to σ . The word W in (*) will be called *the generator* of the identity $W_{\sigma} = 1$. In particular, we have seen that the word $W = [[x_3, x_1^{-1}], x_2]^{x_1}$ satisfies the Hall-Witt property with respect to $\sigma = (1 \ 2 \ 3)$.

Our aim in this paper is three-fold.

(a) To find words W in Σ_n^* and corresponding $\sigma \in S_n$, such that W will have the Hall-Witt property with respect to σ for an infinite number of values of n.

Example 1 Let

$$W = x_1 x_2 \cdots x_n x_1^{-1} x_n^{-1} x_{n-1}^{-1} \cdots x_2^{-1}$$

with respect to $\sigma = (1 \ 2 \ \dots \ n)$. This W satisfies $W_{\sigma} = 1$ for $n \ge 2$, as we shall show later.

(b) To find words $A \in \Sigma_n^*$, so that the *special words* $W = [A, x_1]$ and $W = A^{x_1}$, reminiscent of the generator of the original Hall-Witt identity, and the corresponding $\sigma \in S_n$, will have the Hall-Witt property *for an infinite number* of values of *n*.

Example 2 Let

$$\mathbf{A}=x_2x_3\cdots x_n$$

and

$$\mathbf{W} = [\mathbf{A}, x_1] = [x_2 x_3 \cdots x_n, x_1]$$

with respect to $\sigma = (1 \ 2 \ \dots \ n)$. This W satisfies $W_{\sigma} = 1$ for $n \ge 2$, as we shall show later.

Example 3 Let

$$\mathbf{W} = [x_1^{-1}, x_2 x_3 \dots x_n]^{x_1}$$

with respect to $\sigma = (1 \ 2 \ \dots \ n)$. This W satisfies $W_{\sigma} = 1$ for $n \ge 2$, as we shall show later.

If
$$n = 2$$
, we get $[x_1^{-1}, x_2]^{x_1} [x_2^{-1}, x_1]^{x_2} = 1.$

We consider this identity as a candidate for the **two variable** Hall-Witt identity.

10 / 27

Our third aim in this paper, and the most important one, is:

(c) To find special words W in Σ_n^* , as described in (b), and corresponding $\sigma = (1 \ 2 \ \dots \ n)$ in S_n, such that W will have the Hall-Witt property with respect to σ for an infinite number of values of *n*, and the original Hall-Witt generator $[[x_3, x_1^{-1}], x_2]^{x_1}$ appears as W for certain value of *n*.

Such words will be called *generators of a generalized Hall-Witt identity*.

Example 4 Let

$$W = [x_4^{x_3} x_5^{x_4} x_6^{x_5} \cdots x_n^{x_{n-1}} [x_n, x_1^{-1}], x_2]^{x_1}$$

with respect to $\sigma = (1 \ 2 \ \dots \ n)$. If we apply the convention that if n = 3, then the empty product $x_4^{x_3} x_5^{x_4} x_6^{x_5} \cdots x_n^{x_{n-1}}$ equals 1, then W satisfies $W_{\sigma} = 1$ for $n \ge 3$, as we shall show later.

The first three members of the family are

$$W = [[x_3, x_1^{-1}], x_2]^{x_1} \text{ for } n = 3,$$

$$W = [x_4^{x_3}[x_4, x_1^{-1}], x_2]^{x_1} \text{ for } n = 4,$$

$$W = [x_4^{x_3} x_5^{x_4}[x_5, x_1^{-1}], x_2]^{x_1} \text{ for } n = 5.$$

The identities corresponding to the first two members are:

$$[[x_3, x_1^{-1}], x_2]^{x_1}[[x_1, x_2^{-1}], x_3]^{x_2}[[x_2, x_3^{-1}], x_1]^{x_3} = 1$$

which is the original Hall-Witt identity, and

 $[x_4^{x_3}[x_4, x_1^{-1}], x_2]^{x_1}[x_1^{x_4}[x_1, x_2^{-1}], x_3]^{x_2}[x_2^{x_1}[x_2, x_3^{-1}], x_4]^{x_3}[x_3^{x_2}[x_3, x_4^{-1}], x_1]^{x_4} = 1$

which may be viewed as a "four-variable analog" of the Hall-Witt identity. Thus this $W \in \Sigma_n^*$ is a generator of a generalized Hall-Witt identity.

13 / 27

Under what conditions $\mathrm{W}\in\Sigma^*$ satisfies the Hall-Witt property?

We have proved the following theorem:

Theorem 1

Let $W \in \Sigma^*$ and $\sigma \in S_n$. Then $W_{\sigma} = 1$ if and only if there exist a word $U \in \Sigma^*$ such that $W = U(\sigma \cdot U^{-1})$.

Theorem 1 tells us how to construct words which satisfy the Hall-Witt property.

We continue with some examples mentioned above.

Example 1 (continued) Let

$$W = x_1 x_2 \cdots x_n x_1^{-1} x_n^{-1} x_{n-1}^{-1} \cdots x_2^{-1}$$

with respect to $\sigma = (1 \ 2 \ \dots \ n)$.

Since

$$W = x_1 x_2 \cdots x_n (\sigma \cdot (x_1 x_2 \cdots x_n)^{-1}),$$

it follows from Theorem 1 that W satisfies $W_{\sigma} = 1$ for $n \ge 2$, as claimed.

Example 2 (continued) Let

$$\mathbf{W} = [x_2 x_3 \cdots x_n, x_1]$$

with respect to $\sigma = (1 \ 2 \ \dots \ n)$. Since

$$W = (x_2 x_3 \cdots x_n)^{-1} x_1^{-1} (x_2 x_3 \cdots x_n) x_1$$

= $(x_n^{-1} \dots x_2^{-1} x_1^{-1}) (x_2 x_3 \dots x_n x_1)$
= $U(\sigma \cdot U^{-1})$

for $U = x_n^{-1} \dots x_2^{-1} x_1^{-1}$, it follows by Theorem 1 that W satisfies $W_{\sigma} = 1$ for $n \ge 2$, as claimed. Hence

$$[x_2x_3\cdots x_n, x_1][x_3x_4\cdots x_nx_1, x_2]\cdots [x_1x_2\cdots x_{n-1}, x_n] = 1.$$

Theorem 1 can be also used in order to verify whether a given word satisfies the Hall-Witt property. As an example, let us consider the word $W = [[x_3, x_1^{-1}], x_2]^{x_1}$ from the original Hall-Witt identity. In this case

$$\mathbf{W} = [[x_3, x_1^{-1}], x_2]^{x_1} = x_3^{-1} x_1^{-1} x_3 x_2^{-1} x_3^{-1} x_1 x_3 x_1^{-1} x_2 x_1 x_1 x_3 x_1^{-1} x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1$$

As one can see W is of the form $U(\sigma \cdot U^{-1})$, where $U = x_3^{-1}x_1^{-1}x_3x_2^{-1}x_3^{-1}$ and $\sigma = (1 \ 2 \ 3)$. So indeed, W satisfies the Hall-Witt property.

However, notice that Theorem 1 does not tell us how **to find** the special Hall-Witt identities. The rest of this lecture will be dedicated to this problem.

17 / 27

Special Hall-Witt Type Identities: Generator of the form W = [A, x]

In Example 2 we saw a Hall-Witt type identity with a generator of the form

$$\mathbf{W} = [x_2 x_3 \cdots x_n, x_1].$$

This motivated us to find **all** Hall-Witt type identities with generators of the form

$$\mathbf{W} = [\mathbf{A}, \mathbf{x}]$$

where $x \in \Sigma_n = \{x_1, x_2, \dots, x_n\}$ and $A \in \Sigma_n^*$.

The following theorem completely determines the appropriate A.

Theorem 2

Let $\Sigma = \{x_1, x_2, \dots, x_n\}$ and let $A \in \Sigma^*$ and $i_0 \in \{1, 2, \dots, n\}$. Set $W = [A, x_{i_0}]$ and $\sigma \in S_n$. Then $W_{\sigma} = 1$ if and only if either $A = x_{i_0}^m$, where $m \in \mathbb{Z}$ and σ is an arbitrary permutation, or

$$A = x_{i_0}^m (x_{i_0} x_{i_1} x_{i_2} \cdots x_{i_\ell})^k \quad \text{and} \quad (i_0 \ i_1 \ i_2 \ \dots \ i_\ell) \in \operatorname{dcd}(\sigma)$$

where m and k are integers, $k \neq 0$, $1 \leq \ell \leq n-1$ and $i_0, i_1, \ldots, i_\ell \in \{1, 2, \ldots, n\}$ are distinct indices.

Comment: In this context, $\tau \in dcd(\sigma)$ will mean that τ is one of the cycles in the *disjoint cycle decomposition* of σ .

Example 2 (continued) By taking $\sigma = (1 \ 2 \ 3 \ \dots \ n)$, l = n - 1, m = -1, $i_0 = 1$ and k = 1 we obtain the Hall-Witt type identity with the generator

$$W = [x_1^{-1}(x_1x_2...x_n), x_1] = [x_2x_3...x_n, x_1],$$

as defined in Example 2.

• • • • • • • • •

Example 5 By taking $\sigma = (1 \ 2 \ 3 \ \dots \ n)$, $\ell = n - 1$, m = 0 we obtain the Hall-Witt type identity with the generator

$$\mathbf{W} = [(x_1 x_2 \cdots x_n)^k, x_1]$$

In particular, over the alphabet $\Sigma = \{x_1, x_2, x_3, x_4\}$ and for *any* non-zero integer *k*, we obtain the generator

$$W = [(x_1 x_2 x_3 x_4)^k, x_1]$$

which yields the following Hall-Witt type identity

 $[(x_1x_2x_3x_4)^k, x_1][(x_2x_3x_4x_1)^k, x_2][(x_3x_4x_1x_2)^k, x_3][(x_4x_1x_2x_3)^k, x_4] = 1$

Special Hall-Witt Type Identities: Generator of the form $\mathrm{W}=\mathrm{A}^{\mathsf{x}}$

Since the generator of the original Hall-Witt identity is

 $\mathbf{W} = [[x_3, x_1^{-1}]x_2]^{x_1},$

in order to obtain an analog of the original Hall-Witt identity it is reasonable to search for Hall-Witt identities with generators of the form

$$\mathbf{W}=\mathbf{A}^{\mathsf{x}},$$

where $x \in \Sigma_n = \{x_1, x_2, \dots, x_n\}$ and $A \in \Sigma_n^*$.

The following theorem completely determines the appropriate A.

Theorem 3

Let $\Sigma = \{x_1, x_2, \dots, x_n\}$ and let $i \in \{1, 2, \dots, n\}$, $A \in \Sigma^*$ and let $\sigma \in S_n$. Set $W = A^{x_i}$. Then $W_{\sigma} = 1$ if and only if one of the following conditions is satisfied

(a) σ is arbitrary and A = 1.
(b) σ(i) = i and there is a word L ∈ Σ* such that A = L(σ · L⁻¹).
(c) σ(i) ≠ i and there is a word L ∈ Σ* such that A = x_ix_j⁻¹L(σ · L⁻¹) where j ∈ {1, 2, ..., n} satisfies i = σ(j) or A = (σ⁻¹ · L)L⁻¹x_jx_i⁻¹ where j ∈ {1, 2, ..., n} satisfies σ(i) = j or A = x_iL(σ · L⁻¹)x_i⁻¹.

July 27, 2017

22 / 27

Example 6 Over the alphabet $\Sigma = \{x_1, x_2, x_3\}$ let us choose i = 1,

$$L = x_1^{-1} x_3 x_2^{-1} x_3^{-1} \text{ and } \sigma = (1 \ 2 \ 3).$$

Here $\sigma(3) = 1$, so by part (c) of Theorem 3 (first option) we obtain

$$A = x_1 x_3^{-1} L(\sigma \cdot L^{-1})$$

= $x_1 x_3^{-1} (x_1^{-1} x_3 x_2^{-1} x_3^{-1}) ((1 \ 2 \ 3) \cdot x_3 x_2 x_3^{-1} x_1)$
= $x_1 x_3^{-1} (x_1^{-1} x_3 x_2^{-1} x_3^{-1}) (x_1 x_3 x_1^{-1} x_2)$
= $(x_1 x_3^{-1} x_1^{-1} x_3) x_2^{-1} (x_3^{-1} x_1 x_3 x_1^{-1}) x_2$
= $(x_3^{-1} x_1 x_3 x_1^{-1})^{-1} x_2^{-1} (x_3^{-1} x_1 x_3 x_1^{-1}) x_2$
= $[x_3^{-1} x_1 x_3 x_1^{-1}, x_2]$
= $[[x_3, x_1^{-1}], x_2]$

Thus

$$W = A^{x_1} = [[x_3, x_1^{-1}], x_2]^{x_1}$$

which yields the original Hall-Witt identity.

Example 4 (continued) Let $n \ge 4$ be an integer and consider the alphabet $\Sigma = \{x_1, x_2, \dots, x_n\}$. If $\sigma = (1 \ 2 \ 3 \ \dots \ n)$, i = 1 and

$$\mathbf{L} = x_1^{-1}(x_n x_{n-1}^{-1} x_n^{-1}) \cdots (x_4 x_3^{-1} x_4^{-1})(x_3 x_2^{-1} x_3^{-1})$$

then it can be shown that

$$A = x_1 x_n^{-1} L(\sigma \cdot L^{-1})$$

= $[x_4^{x_3} x_5^{x_4} \cdots x_n^{x_{n-1}} [x_n, x_1^{-1}], x_2]$

is of the type required by Theorem 3. Thus

$$W = A^{x_1} = \left[x_4^{x_3} x_5^{x_4} x_6^{x_5} \cdots x_n^{x_{n-1}} [x_n, x_1^{-1}], x_2 \right]^{x_1}$$

satisfies the Hall-Witt property. Notice that if we apply the convention that the empty product equals 1, then we may use this expression also with n = 3 to obtain

$$\mathbf{W} = [[x_3, x_1^{-1}], x_2]^{x_1},$$

which generates the original Hall-Witt identity. Therefore W is a generator of a generalized Hall-Witt identity.

Example 3 (continued) Let $n \ge 2$ be an integer and consider the alphabet $\Sigma = \{x_1, x_2, \dots, x_n\}$. If $\sigma = (1 \ 2 \ 3 \ \dots \ n)$, i = 1 and

$$L = x_{n-1}^{-1} \dots x_2^{-1} x_1^{-1}$$

then it can be shown that

$$\mathbf{A} = x_1 x_n^{-1} \mathbf{L} (\sigma \cdot \mathbf{L}^{-1})$$
$$= [x_1^{-1}, x_2 x_3 \dots x_n]$$

is of the type required by theorem 3. Thus

$$W = A^{x_1} = [x_1^{-1}, x_2 x_3 \dots x_n]^{x_1}$$

satisfies the Hall-Witt property. Note that assigning n = 2 yields the identity

$$[x_1^{-1}, x_2]^{x_1} [x_2^{-1}, x_1]^{x_2} = 1$$

which may be viewed as a "two-variable analog" of the Hall-Witt identity.

Example 7 Let
$$n \ge 1$$
 be an integer and consider the alphabet
 $\Sigma = \{x_1, x_2, \dots, x_n\}$. If $\sigma = (1 \ 2 \ 3 \ \dots \ 2n + 1)$, $i = 1$ and
 $L = x_{2n-1}^{-1} \cdots x_5^{-1} x_3^{-1} x_1^{-1} x_{2n+1} x_{2n}^{-1} \cdots x_6^{-1} x_4^{-1} x_2^{-1} x_{2n+1}^{-1}$

then it can be shown that

$$A = x_1 x_{2n+1}^{-1} L(\sigma \cdot L^{-1})$$

= [(x_1 x_3 x_5 \cdots x_{2n-1})^{x_{2n+1}} x_1^{-1}, x_2 x_4 x_6 \cdots x_{2n}]

is of the type required by Theorem 3. Thus

$$W = A^{x_1} = \left[(x_1 x_3 x_5 \cdots x_{2n-1})^{x_{2n+1}} x_1^{-1}, x_2 x_4 x_6 \cdots x_{2n} \right]^{x_1}$$

satisfies the Hall-Witt property. Note that if we take n = 1 we get the generator of the original Hall-Witt identity:

$$W = [x_1^{x_3} x_1^{-1}, x_2]^{x_1} = [[x_3, x_1^{-1}], x_2]^{x_1}$$

Thus also ${\rm W}$ is a generator of a generalized Hall-Witt identity.

This is the END of my talk.

I would be happy to receive your comments. My e-mail is arctanx@gmail.com

THANK YOU for your ATTENTION!

Boaz Cohen arctanx@gmail.com A generalization of the Hall-Witt identity