Certain Monomial Characters and Their Subnormal Constituents

Carolina Vallejo

Universitat de València

St. Andrews, August 2013
This is a joint work with G. Navarro.
Introduction
Let G be a group. A character $\chi \in \text{Irr}(G)$ is said to be \textbf{monomial} if there exist a subgroup $U \subseteq G$ and a linear $\lambda \in \text{Irr}(U)$, such that

$$\chi = \lambda^G.$$
Let G be a group. A character $\chi \in \text{Irr}(G)$ is said to be \textit{monomial} if there exist a subgroup $U \subseteq G$ and a linear $\lambda \in \text{Irr}(U)$, such that

$$\chi = \lambda^G.$$

A group G is said to be \textit{monomial} if all its irreducible characters are monomial.
There are few results guaranteeing that a given character of a group is monomial.
There are few results guaranteeing that a given character of a group is monomial.

Theorem

Let G be a supersolvable group. Then all irreducible characters of G are monomial.
There are few results guaranteeing that a given character of a group is monomial.

Theorem

Let G be a supersolvable group. Then all irreducible characters of G are monomial.

Thus, supersolvable groups are monomial groups.
There are few results guaranteeing that a given character of a group is monomial.

Theorem

Let G be a supersolvable group. Then all irreducible characters of G are monomial.

Thus, supersolvable groups are monomial groups. But this result depends more on the structure of the group than on characters themselves.
An interesting result.
An interesting result.

Theorem (Gow)

Let G be a solvable group. Suppose that $\chi \in \text{Irr}(G)$ takes real values and has odd degree. Then χ is rational-valued and monomial.
An interesting result.

Theorem (Gow)

Let G be a solvable group. Suppose that $\chi \in \text{Irr}(G)$ takes real values and has odd degree. Then χ is rational-valued and monomial.

We give a monomiality criterium which also deals with fields of values and degrees of characters.
Notation: For n an integer, we write

$$\mathbb{Q}_n = \mathbb{Q}(\xi),$$

where ξ is a primitive nth root of unity.
Notation: For \(n \) an integer, we write

\[\mathbb{Q}_n = \mathbb{Q}(\xi), \]

where \(\xi \) is a primitive \(n \)th root of unity.

Theorem A

Let \(G \) be a \(p \)-solvable group. Assume that \(|N_G(P) : P| \) is odd, where \(P \in \text{Syl}_p(G) \) for some prime \(p \). If \(\chi \in \text{Irr}(G) \) has degree not divisible by \(p \) and the values of \(\chi \) are contained in the cyclotomic extension \(\mathbb{Q}|_{G|_p} \), then \(\chi \) is monomial.
Notation: For \(n \) an integer, we write

\[
\mathbb{Q}_n = \mathbb{Q}(\xi),
\]

where \(\xi \) is a primitive \(n \)th root of unity.

Theorem A

Let \(G \) be a \(p \)-solvable group. Assume that \(|N_G(P): P| \) is odd, where \(P \in Syl_p(G) \) for some prime \(p \). If \(\chi \in \text{Irr}(G) \) has degree not divisible by \(p \) and the values of \(\chi \) are contained in the cyclotomic extension \(\mathbb{Q}_{|G|_p} \), then \(\chi \) is monomial.

When \(p = 2 \), we can recover Gow’s result from Theorem A.
The hypothesis about the index $|N_G(P) : P|$ is necessary.
The hypothesis about the index $|N_G(P) : P|$ is necessary. For instance, the group $SL(2,3)$ and the prime $p=3$.
The hypothesis about the index $|N_G(P) : P|$ is necessary. For instance, the group $\text{SL}(2,3)$ and the prime $p=3$.

The solvability hypothesis is necessary in both Gow’s and Theorem A.
The hypothesis about the index $|N_G(P) : P|$ is necessary. For instance, the group $\text{SL}(2,3)$ and the prime $p=3$.

The solvability hypothesis is necessary in both Gow’s and Theorem A. The alternating group A_6 is a counterexample in both cases.
B_π Theory
We say that $\chi \in \text{Irr}(G)$ is a π-special character of G, if
We say that $\chi \in \text{Irr}(G)$ is a π-special character of G, if

(a) $\chi(1)$ is a π-number.
We say that $\chi \in \text{Irr}(G)$ is a π-special character of G, if

(a) $\chi(1)$ is a π-number.

(b) For every subnormal subgroup $N \triangleleft \triangleleft G$, the order of all the irreducible constituents of χ_N is a π-number.
We say that \(\chi \in \text{Irr}(G) \) is a \(\pi \)-special character of \(G \), if

(a) \(\chi(1) \) is a \(\pi \)-number.

(b) For every subnormal subgroup \(N \triangleleft \triangle G \), the order of all the irreducible constituents of \(\chi_N \) is a \(\pi \)-number.

A \(B_\pi \) character of a group \(G \)
We say that \(\chi \in \text{Irr}(G) \) is a \(\pi \)-special character of \(G \), if

(a) \(\chi(1) \) is a \(\pi \)-number.

(b) For every subnormal subgroup \(N \triangleleft \triangleleft G \), the order of all the irreducible constituents of \(\chi_N \) is a \(\pi \)-number.

A \(B_\pi \) character of a group \(G \) may be thought as an irreducible character of \(G \) induced from a \(\pi \)-special character of some subgroup of \(G \).
We say that $\chi \in \text{Irr}(G)$ is a π-special character of G, if

(a) $\chi(1)$ is a π-number.

(b) For every subnormal subgroup $N \triangleleft \triangleleft G$, the order of all the irreducible constituents of χ_N is a π-number.

A B_π character of a group G may be thought as an irreducible character of G induced from a π-special character of some subgroup of G. (True in groups of odd order).
Main results
Main results

Theorem B

Let G be a p-solvable group. Assume that $|N_G(P) : P|$ is odd, where $P \in \text{Syl}_p(G)$ for some prime p. If $\chi \in \text{Irr}(G)$ has degree not divisible by p and its values are contained in the cyclotomic extension $\mathbb{Q}|_{G|_p}$, then χ is a B_p character of G.

Notice that B_p characters with degree not divisible by p are monomial. Thus Theorem B implies Theorem A.
Theorem B

Let G be a p-solvable group. Assume that $|N_G(P) : P|$ is odd, where $P \in Syl_p(G)$ for some prime p. If $\chi \in \text{Irr}(G)$ has degree not divisible by p and its values are contained in the cyclotomic extension $\mathbb{Q}_{|G|_p}$, then χ is a B_p character of G.

Notice that B_p characters with degree not divisible by p are monomial.
Theorem B

Let G be a p-solvable group. Assume that $|N_G(P) : P|$ is odd, where $P \in \text{Syl}_p(G)$ for some prime p. If $\chi \in \text{Irr}(G)$ has degree not divisible by p and its values are contained in the cyclotomic extension $\mathbb{Q}|_{G|_p}$, then χ is a B_p character of G.

Notice that B_p characters with degree not divisible by p are monomial. Thus Theorem B implies Theorem A.
As a Corollary of Theorem B we get.
Main results

As a Corollary of Theorem B we get.

Corollary C

Let G be a p-solvable group. Suppose that $|N_G(P) : P|$ is odd, where $P \in \text{Syl}_p(G)$ for some prime p. If $\chi \in \text{Irr}(G)$ has degree not divisible by p and its field of values is contained in $\mathbb{Q}|G|_p$, then every subnormal constituent of χ is monomial.
As a Corollary of Theorem B we get.

Corollary C

Let G be a p-solvable group. Suppose that $|N_G(P) : P|$ is odd, where $P \in \text{Syl}_p(G)$ for some prime p. If $\chi \in \text{Irr}(G)$ has degree not divisible by p and its field of values is contained in $\mathbb{Q}|G|_p$, then every subnormal constituent of χ is monomial.

Key: Subnormal constituents of B_π characters are B_π characters.
As a Corollary of Theorem B we get.

Corollary C

Let G be a p-solvable group. Suppose that $|N_G(P):P|$ is odd, where $P \in \text{Syl}_p(G)$ for some prime p. If $\chi \in \text{Irr}(G)$ has degree not divisible by p and its field of values is contained in $\mathbb{Q}_{|G|_p}$, then every subnormal constituent of χ is monomial.

Key: Subnormal constituents of B_{π} characters are B_{π} characters. Gow’s Theorem and Theorem A do not provide information about the subnormal constituents.
We also obtain the following consequence.
We also obtain the following consequence.

Corollary D

Let G be a p-solvable group. Assume that $|N_G(P) : P|$ is odd, where $P \in Syl_p(G)$ for some prime p. The number of irreducible characters which have degree not divisible by p and field of values contained in $\mathbb{Q}_{|G|_p}$ equals the number of orbits under the natural action of $N_G(P)$ on P/P'.

We also obtain the following consequence.

Corollary D

Let G be a p-solvable group. Assume that $|N_G(P):P|$ is odd, where $P \in \text{Syl}_p(G)$ for some prime p. The number of irreducible characters which have degree not divisible by p and field of values contained in $\mathbb{Q}_{|G_p}$ equals the number of orbits under the natural action of $N_G(P)$ on P/P'.

The number of such characters can be computed locally.
Thanks for your attention!