Embeddings into Thompson’s group V and coCF groups

Francesco Matucci (joint with C. Bleak, M. Neunhöffer)

Groups St. Andrews 2013

St. Andrews

August 7, 2013
Finite state automaton

A (deterministic) finite state automaton is a quintuple (S, A, μ, Y, s_0), where

- S is a finite set, called the state set,
- A is a finite set, called the alphabet,
- $\mu : A \times S \rightarrow S$ is a function, called the transition function,
- Y is a (possibly empty) subset of S called the subset of accept states,
- $s_0 \in S$ is called the start state.

If we allow $\mu : A \times S \rightarrow P(S)$, we call it a non-deterministic FSA.

Remark: Every NDFSA is equivalent to a DFSA.
Finite state automaton

Mathematical model of computation to design computer programs.
Finite state automaton

Mathematical model of computation to design computer programs.

Definition (DFSA)

A (deterministic) **finite state automaton** is a quintuple \((S, A, \mu, Y, s_0)\), where

- \(S\) is a finite set, called the *state set*,
- \(A\) is a finite set, called the *alphabet*,
- \(\mu : A \times S \rightarrow S\) is a function, called the *transition function*,
- \(Y\) is a (possibly empty) subset of \(S\) called the *subset of accept states*,
- \(s_0 \in S\) is called the *start state*.
Finite state automaton

Mathematical model of computation to design computer programs.

Definition (DFSA)

A (deterministic) **finite state automaton** is a quintuple
\((S, A, \mu, Y, s_0)\), where

- \(S\) is a finite set, called the *state set*,
- \(A\) is a finite set, called the *alphabet*,
- \(\mu : A \times S \rightarrow S\) is a function, called the *transition function*,
- \(Y\) is a (possibly empty) subset of \(S\) called the *subset of accept states*,
- \(s_0 \in S\) is called the *start state*.

If we allow \(\mu : A \times S \rightarrow \mathcal{P}(S)\), we call it a *non-deterministic FSA*.
Finite state automaton

Mathematical model of computation to design computer programs.

Definition (DFSA)

A (deterministic) **finite state automaton** is a quintuple (S, A, μ, Y, s_0), where

- S is a finite set, called the *state set*,
- A is a finite set, called the *alphabet*,
- $\mu : A \times S \rightarrow S$ is a function, called the *transition function*,
- Y is a (possibly empty) subset of S called the subset of *accept states*,
- $s_0 \in S$ is called the *start state*.

If we allow $\mu : A \times S \rightarrow \mathcal{P}(S)$, we call it a *non-deterministic* FSA.

Remark

Every NDFSA is equivalent to a DFSA.
Finite state automaton: an example
Finite state automaton: an example
Regular language and finite groups

Definition
Given a FSA a regular language is the language given by all paths inside the FSA which begin at the start state and end at an accept state.

Definition
Given a finitely generated group \(G = \langle X | R \rangle \), the language of the word problem is \(WP(G) = \{ \text{words } w \text{ in the monoid of } X \cup X^{-1} \text{ such that } w \equiv G^1 \} \).

Theorem (Anisimov)
A finitely generated group \(G \) is finite if and only if \(WP(G) \) is a regular language.
Definition
Given a FSA a **regular language** is the language given by all paths inside the FSA which begin at the start state and end at an accept state.
Definition
Given a FSA a **regular language** is the language given by all paths inside the FSA which begin at the start state and end at an accept state.

Definition
Given a finitely generated group $G = \langle X \mid R \rangle$, the **language of the word problem** is

$$WP(G) = \{ \text{words } w \text{ in the monoid of } X \cup X^{-1} \text{ such that } w \equiv_G 1 \}.$$
Definition
Given a FSA a regular language is the language given by all paths inside the FSA which begin at the start state and end at an accept state.

Definition
Given a finitely generated group $G = \langle X \mid R \rangle$, the language of the word problem is

\[WP(G) = \{ \text{words } w \text{ in the monoid of } X \cup X^{-1} \text{ such that } w \equiv_G 1 \}. \]

Theorem (Anisimov)
A finitely generated group G is finite if and only if $WP(G)$ is a regular language.
Pushdown automaton

Definition (PDA - Handwaving)

A PDA is like a FSA but it also employs a stack in its transition function. The transition function pops and pushes a symbol at the top of the stack and uses it to decide which state to reach.

Remark

PDA adds the stack as a parameter for choice. Finite state machines just look at the input signal and the current state: they have no stack to work with.

It is not true that all NDPDA are equivalent to DPDA.
Definition (PDA - Handwaving)

A PDA is like a FSA but it also employs a stack in its transition function. The transition function *pops* and *pushes* a symbol at the top of the stack and uses it to decide which state to reach.
Definition (PDA - Handwaving)

A *PDA* is like a FSA but it also employs a *stack* in its transition function. The transition function *pops* and *pushes* a symbol at the top of the stack and uses it to decide which state to reach.

Remark

PDA adds the stack as a parameter for choice. Finite state machines just look at the input signal and the current state: they have no stack to work with.
Definition (PDA - Handwaving)

A PDA is like a FSA but it also employs a stack in its transition function. The transition function *pops* and *pushes* a symbol at the top of the stack and uses it to decide which state to reach.

Remark

PDA adds the stack as a parameter for choice. Finite state machines just look at the input signal and the current state: they have no stack to work with.

It is **not** true that all NDPDA are equivalent to DPDA.
Pushdown automaton: an example
Pushdown automaton: an example
Context free languages and virtually free groups

Definition

Context-free languages are those accepted by PDAs.

Definition

A finitely generated group is a context-free group if WP(G) is a context-free language.

Theorem (Muller-Schupp)

A finitely generated group G is virtually free if and only if it is context-free.
Definition
Context-free languages are those accepted by PDAs.

Theorem (Muller-Schupp)
A finitely generated group \(G \) is virtually free if and only if it is context-free.
Definition
Context-free languages are those accepted by PDAs.

Definition
A finitely generated group is a **context-free group** if $WP(G)$ is a context-free language.
Context-free languages and virtually free groups

Definition
Context-free languages are those accepted by PDAs.

Definition
A finitely generated group is a context-free group if $WP(G)$ is a context-free language.

Theorem (Muller-Schupp)
A finitely generated group G is virtually free if and only if it is context-free.
Co-context-free (Co-CF) groups

Definition
Given a finitely generated group $G = \langle X | R \rangle$, the language of the coword problem is $\text{coWP}(G) = \{\text{words } w \text{ in the monoid of } X \cup X^{-1} \text{ such that } w \not\equiv G \}$.

Definition
A finitely generated group is a co-context-free group (coCF) if $\text{coWP}(G)$ is a context-free language. Let coCF be the class of all coCF groups.

Remark
Every CF group is in coCF (the converse is not true).
Definition
Given a finitely generated group $G = \langle X \mid R \rangle$, the **language of the coword problem** is

$$\text{coWP}(G) = \{ \text{words } w \text{ in the monoid of } X \cup X^{-1} \text{ such that } w \not\equiv G 1 \}.$$
Co-context-free (Co-CF) groups

Definition
Given a finitely generated group $G = \langle X \mid R \rangle$, the **language of the coword problem** is

$$\text{coWP}(G) = \{ \text{words } w \text{ in the monoid of } X \cup X^{-1} \text{ such that } w \not\equiv_G 1 \}.$$

Definition
A finitely generated group is a **co-context-free group** (coCF) if $\text{coWP}(G)$ is a context-free language. Let coCF be the class of all coCF groups.
Co-context-free (Co-CF) groups

Definition
Given a finitely generated group $G = \langle X \mid R \rangle$, the language of the coword problem is

$\text{coWP}(G) = \{\text{words } w \text{ in the monoid of } X \cup X^{-1} \text{ such that } w \not\equiv_G 1\}.$

Definition
A finitely generated group is a co-context-free group (coCF) if $\text{coWP}(G)$ is a context-free language. Let $\text{coC}\mathcal{F}$ be the class of all coCF groups.

Remark
Every CF group is in $\text{coC}\mathcal{F}$ (the converse is not true).
Closure properties of the class coCF

Theorem (Holt-R"over-Rees-Thomas)

The class coCF is closed under taking

- taking finite direct products,
- taking restricted standard wreath products with context-free top groups,
- passing to finitely generated subgroups,
- passing to finite index overgroups.

Conjecture (Holt-R"over-Rees-Thomas)

coCF is not closed for free products.

Candidate: $\mathbb{Z} \ast \mathbb{Z}/2$.

Theorem (Bleak-Salazar)

$\mathbb{Z} \ast \mathbb{Z}/2$ does not embed into Thompson’s group V.

Closure properties of the class coCF

Theorem (Holt-Röver-Rees-Thomas)

The class coCF is closed under taking

- taking finite direct products,
- taking restricted standard wreath products with context-free top groups,
- passing to finitely generated subgroups,
- passing to finite index overgroups.

Conjecture (Holt-Röver-Rees-Thomas)

coCF is not closed for free products.

Candidate: $\mathbb{Z} \ast \mathbb{Z}_2$.

Theorem (Bleak-Salazar)

$\mathbb{Z} \ast \mathbb{Z}_2$ does not embed into Thompson's group V.
Closure properties of the class coCF

Theorem (Holt-Röver-Rees-Thomas)

The class coCF is closed under taking

- taking finite direct products,

Conjecture (Holt-Röver-Rees-Thomas)

coCF is not closed for free products.

Candidate: $\mathbb{Z} \ast \mathbb{Z}_2$.

Theorem (Bleak-Salazar)

$\mathbb{Z} \ast \mathbb{Z}_2$ does not embed into Thompson's group V.
Theorem (Holt-Röver-Rees-Thomas)

The class $\text{coC} \mathcal{F}$ is closed under taking

- taking finite direct products,
- taking restricted standard wreath products with context-free top groups,
Closure properties of the class coCF

Theorem (Holt-Röver-Rees-Thomas)

The class coCF is closed under taking

- taking finite direct products,
- taking restricted standard wreath products with context-free top groups,
- passing to finitely generated subgroups.
The class $\text{coC} F$ is closed under taking

- taking finite direct products,
- taking restricted standard wreath products with context-free top groups,
- passing to finitely generated subgroups
- passing to finite index overgroups.
The class \(\text{coC}F \) is closed under taking

- taking finite direct products,
- taking restricted standard wreath products with context-free top groups,
- passing to finitely generated subgroups
- passing to finite index overgroups.

Conjecture (Holt-Röver-Rees-Thomas) \(\text{coC}F \) is not closed for free products. Candidate: \(\mathbb{Z} \ltimes \mathbb{Z}^2 \).
Closure properties of the class coCF

Theorem (Holt-Röver-Rees-Thomas)

The class coCF is closed under taking

- taking finite direct products,
- taking restricted standard wreath products with context-free top groups,
- passing to finitely generated subgroups
- passing to finite index overgroups.

Conjecture (Holt-Röver-Rees-Thomas)

coCF is not closed for free products. Candidate: $\mathbb{Z} \ast \mathbb{Z}^2$.

Theorem (Bleak-Salazar)

$\mathbb{Z} \ast \mathbb{Z}^2$ does not embed into Thompson’s group V.
Thompson’s group F is the group $PL_2(I)$, with respect to composition, of all piecewise-linear homeomorphisms of the unit interval $I = [0,1]$ with a finite number of breakpoints, such that

\triangleright all slopes are integral powers of 2,

\triangleright all breakpoints have dyadic rational coordinates.
Thompson’s group F is the group $PL_2(I)$, with respect to composition, of all piecewise-linear homeomorphisms of the unit interval $I = [0, 1]$ with a finite number of breakpoints, such that
Thompson’s group F is the group $PL_2(I)$, with respect to composition, of all piecewise-linear homeomorphisms of the unit interval $I = [0, 1]$ with a finite number of breakpoints, such that

- all slopes are integral powers of 2,
Thompson’s group F is the group $PL_2(I)$, with respect to composition, of all piecewise-linear homeomorphisms of the unit interval $I = [0, 1]$ with a finite number of breakpoints, such that

- all slopes are integral powers of 2,
- all breakpoints have dyadic rational coordinates.
Thompson’s group F is the group $PL_2(I)$, with respect to composition, of all piecewise-linear homeomorphisms of the unit interval $I = [0, 1]$ with a finite number of breakpoints, such that

- all slopes are integral powers of 2,
- all breakpoints have dyadic rational coordinates.
Thompson’s group F is the group $\text{PL}_2(I)$, with respect to composition, of all piecewise-linear homeomorphisms of the unit interval $I = [0, 1]$ with a finite number of breakpoints, such that

- all slopes are integral powers of 2,
- all breakpoints have dyadic rational coordinates.
Thompson’s group T
Thompson’s group T

Similar to F, but defined on the unit circle: it preserves the cyclic order of the intervals
Thompson’s group \(T \)

Similar to \(F \), but defined on the unit circle: it preserves the cyclic order of the intervals
Thompson’s group T

Similar to F, but defined on the unit circle: it preserves the cyclic order of the intervals
Thompson’s group V
Thompson’s group V

Similar to F, but not continuous: it permutes the order of the intervals and can be seen as a group of homeomorphisms of the Cantor set \mathcal{C} to itself:
Similar to F, but not continuous: it permutes the order of the intervals and can be seen as a group of homeomorphisms of the Cantor set \mathcal{C} to itself:
Multiplication of tree pairs

1 2 5 3
34 4 2
1 5
1 234
3 4
2 1
Multiplication of tree pairs
The group $\mathbb{Q}\text{Aut}(T_{2,c})$ is the infinite binary 2-colored tree (left = red, right = blue).

Definition $\mathbb{Q}\text{Aut}(T_{2,c})$ is the group of all maps $T_{2,c} \rightarrow T_{2,c}$ which respect the edge and color relation, except for possibly finitely many vertices.
The group $Q\text{Aut}(\mathcal{T}_{2,c})$

$\mathcal{T}_{2,c}$ is the infinite binary 2-colored tree (left = red, right = blue).
The group $\mathcal{QAut}(T_{2,c})$

$T_{2,c}$ is the infinite binary 2-colored tree (left = red, right = blue).

Definition

$\mathcal{QAut}(T_{2,c})$ is the group of all maps $T_{2,c} \rightarrow T_{2,c}$ which respect the edge and color relation, except for possibly finitely many vertices.
The group $\mathcal{QAut}(T_{2,c})$
The group $\text{QAut}(T_{2,c})$
Lehnert’s conjecture
Lehnert’s conjecture

Theorem (Lehnert)

\[\text{QAut}(\mathcal{T}_{2,c}) \text{ is in coC.F.} \]
Theorem (Lehnert)
\[\text{QAut}(\mathcal{T}_2, c) \text{ is in } \text{coC}\mathcal{F}. \]

Conjecture (Lehnert)
\[\text{QAut}(\mathcal{T}_2, c) \text{ is a universal coC}\mathcal{F} \text{ group.} \]
The relation between \mathcal{V} and $\mathcal{QAut}(\mathcal{T}_{2,c})$

Our version of his proposed embedding:

1. Given a tree \mathcal{T}, regard it as a subtree of $\mathcal{T}_{2,c}$ with root 0 (left child of the root of $\mathcal{T}_{2,c}$).
2. Define a bijection $\omega_{\mathcal{T}}:\{\text{leaves of } \mathcal{T}\} \to \{\text{nodes of } \mathcal{T}_{2,c}\} \cup \{\varepsilon\}$ in the left-to-right order so the rightmost leaf goes to ε.
3. Given $(D,R,\sigma) \in \mathcal{V}$ define its image this way:
 1. σ takes subtrees of $\mathcal{T}_{2,c}$ at leaves D to those at leaves of R.
 2. If n is a node of D or the root of $\mathcal{T}_{2,c}$, send it to $n \omega_{\mathcal{T}}^{-1} D \sigma \omega_{\mathcal{T}} R$.

Corollary (Lehnert-Schweitzer)
Thompson’s group \mathcal{V} is in coCF.
The relation between V and $\mathbb{Q}\text{Aut}(\mathcal{T}_{2,c})$

Theorem (Lehnert)

$V \hookrightarrow \mathbb{Q}\text{Aut}(\mathcal{T}_{2,c})$.

Corollary (Lehnert-Schweitzer)

Thompson's group V is in $\text{co}\mathcal{C}\mathcal{F}$.
The relation between V and $\mathcal{QAut}(\mathcal{T}_{2,c})$

Theorem (Lehnert)
\[V \hookrightarrow \mathcal{QAut}(\mathcal{T}_{2,c}). \]

Our version of his proposed embedding:

1. σ takes subtrees of $\mathcal{T}_{2,c}$ at leaves D to those at leaves of R.
2. If n is a node of D or the root of $\mathcal{T}_{2,c}$, send it to $n \omega^{-1} D \sigma \omega R$.
The relation between V and $\text{QAut}(\mathcal{T}_{2,c})$

Theorem (Lehnert)

$V \hookrightarrow \text{QAut}(\mathcal{T}_{2,c})$.

Our version of his proposed embedding:

- Given a tree T, regard it as a subtree of $\mathcal{T}_{2,c}$ with root 0 (left child of the root of $\mathcal{T}_{2,c}$)

Corollary (Lehnert-Schweitzer)

Thompson's group V is in $\text{co} \text{CF}$.
The relation between V and $Q\text{Aut}(\mathcal{T}_{2,c})$

Theorem (Lehnert)

$V \hookrightarrow Q\text{Aut}(\mathcal{T}_{2,c})$.

Our version of his proposed embedding:

- Given a tree T, regard it as a subtree of $\mathcal{T}_{2,c}$ with root 0 (left child of the root of $\mathcal{T}_{2,c}$)

- Define a bijection $\omega_T : \{\text{leaves of } T\} \rightarrow \{\text{nodes of } T\} \cup \{\varepsilon\}$ in the left-to-right order so the the rightmost leaf goes to ε.

Corollary (Lehnert-Schweitzer)

Thompson’s group V is in coCF.
The relation between V and $\text{QAut}(\mathcal{T}_{2,c})$

Theorem (Lehnert)

$V \hookrightarrow \text{QAut}(\mathcal{T}_{2,c})$.

Our version of his proposed embedding:

- Given a tree T, regard it as a subtree of $\mathcal{T}_{2,c}$ with root 0 (left child of the root of $\mathcal{T}_{2,c}$)
- Define a bijection $\omega_T : \{\text{leaves of } T\} \rightarrow \{\text{nodes of } T\} \cup \{\varepsilon\}$ in the left-to-right order so the the rightmost leaf goes to ε.
- Given $(D, R, \sigma) \in V$ define its image this way:
 1. σ takes subtrees of $\mathcal{T}_{2,c}$ at leaves D to those at leaves of R.
 2. If n is a node of D or the root of $\mathcal{T}_{2,c}$, send it to $n \omega_D^{-1} \sigma \omega_R$.

Corollary (Lehnert-Schweitzer)

Thompson's group V is in coCF.
The relation between V and $\text{QAut}(\mathcal{T}_{2,c})$

Theorem (Lehnert)

$V \hookrightarrow \text{QAut}(\mathcal{T}_{2,c})$.

Our version of his proposed embedding:

- Given a tree T, regard it as a subtree of $\mathcal{T}_{2,c}$ with root 0 (left child of the root of $\mathcal{T}_{2,c}$)

- Define a bijection $\omega_T : \{\text{leaves of } T\} \rightarrow \{\text{nodes of } T\} \cup \{\varepsilon\}$ in the left-to-right order so the the rightmost leaf goes to ε.

- Given $(D, R, \sigma) \in V$ define its image this way:

 1. σ takes subtrees of $\mathcal{T}_{2,c}$ at leaves D to those at leaves of R.
 2. If n is a node of D or the root of $\mathcal{T}_{2,c}$, send it to $n\omega_D^{-1}\sigma\omega_R$.

Corollary (Lehnert-Schweitzer)

Thompson’s group V is in coCF.
The relation between V and $\mathcal{QAut}(\mathcal{T}_{2,c})$

Lemma (Lehnert, Bleak-M-Neunhöffer)

If $\tau \in \mathcal{QAut}(\mathcal{T}_{2,c})$ there is a pair $d_\tau = (v_\tau, p_\tau)$ representing τ such that $v_\tau \in V$ acts like τ beneath a suitable level (V-part), p_τ is a bijection on the nodes above (bijection part).

We call d_τ a disjoint decomposition.

There are many disjoint decompositions, but we can always define a minimal one (in some sense).
The relation between V and $Q\text{Aut}(T_{2,c})$

Lemma (Lehnert, Bleak-M-Neunhöffer)

If $\tau \in Q\text{Aut}(T_{2,c})$ there is a pair $d_\tau = (v_\tau, p_\tau)$ representing τ such that

- $v_\tau \in V$ acts like τ beneath a suitable level (V-part),
- p_τ is a bijection on the nodes above (bijection part).
The relation between V and $Q\text{Aut}(\mathcal{T}_{2,c})$

Lemma (Lehnert, Bleak-M-Neunhöffer)

If $\tau \in Q\text{Aut}(\mathcal{T}_{2,c})$ there is a pair $d_\tau = (v_\tau, p_\tau)$ representing τ such that

- $v_\tau \in V$ acts like τ beneath a suitable level (V-part),
- p_τ is a bijection on the nodes above (bijection part).

We call d_τ a disjoint decomposition.
The relation between V and $\text{QAut}(\mathcal{T}_{2,c})$

Lemma (Lehnert, Bleak-M-Neunhöffer)

If $\tau \in \text{QAut}(\mathcal{T}_{2,c})$ there is a pair $d_{\tau} = (v_{\tau}, p_{\tau})$ representing τ such that

- $v_{\tau} \in V$ acts like τ beneath a suitable level (V-part),
- p_{τ} is a bijection on the nodes above (bijection part).

We call d_{τ} a **disjoint decomposition**.

There are many disjoint decompositions, but we can always define a minimal one (in some sense).
The relation between V and $\mathcal{QAut}(\mathcal{T}_{2,c})$

Question (Lehnert-Schweitzer)

Does $\mathcal{QAut}(\mathcal{T}_{2,c})$ embed into V?

Theorem (Bleak-M-Neunh"offer)

Yes.

Idea of the embedding: start with $\tau \in \mathcal{QAut}(\mathcal{T}_{2,c})$:

\triangleright Build $d_\tau = (v_\tau, p_\tau)$ with $v_\tau = (D_\tau, R_\tau, \sigma_\tau)$,

\triangleright Build a new tree pair $(\hat{D}_\tau, \hat{R}_\tau, \hat{\sigma}_\tau)$ by "expanding v_τ" suitably.
The relation between V and $\text{QAut}(\mathcal{T}_{2,c})$

Question (Lehnert-Schweitzer)
Does $\text{QAut}(\mathcal{T}_{2,c})$ embed into V?
The relation between V and $\text{QAut}(\mathcal{T}_{2,c})$

Question (Lehnert-Schweitzer)
Does $\text{QAut}(\mathcal{T}_{2,c})$ embed into V?

Theorem (Bleak-M-Neunhöffer)
Yes.
The relation between V and $\mathbb{Q} \text{Aut}(\mathcal{T}_{2,c})$

Question (Lehnert-Schweitzer)
Does $\mathbb{Q} \text{Aut}(\mathcal{T}_{2,c})$ embed into V?

Theorem (Bleak-M-Neunhöffer)
Yes.

Idea of the embedding: start with $\tau \in \mathbb{Q} \text{Aut}(\mathcal{T}_{2,c})$:

- Build $d_\tau = (v_\tau, p_\tau)$ with $v_\tau = (D_\tau, R_\tau, \sigma_\tau)$.
- Build a new tree pair $(\hat{D}_\tau, \hat{R}_\tau, \hat{\sigma}_\tau)$ by "expanding v_τ" suitably.
The relation between V and $\text{QAut}(\mathcal{T}_{2,c})$

Question (Lehnert-Schweitzer)
Does $\text{QAut}(\mathcal{T}_{2,c})$ embed into V?

Theorem (Bleak-M-Neunhöffer)
Yes.

Idea of the embedding: start with $\tau \in \text{QAut}(\mathcal{T}_{2,c})$:

- Build $d_\tau = (v_\tau, p_\tau)$ with $v_\tau = (D_\tau, R_\tau, \sigma_\tau)$,
The relation between V and $\text{QAut}(T_{2,c})$

Question (Lehnert-Schweitzer)
Does $\text{QAut}(T_{2,c})$ embed into V?

Theorem (Bleak-M-Neunhöffer)
Yes.

Idea of the embedding: start with $\tau \in \text{QAut}(T_{2,c})$:

- Build $d_\tau = (v_\tau, p_\tau)$ with $v_\tau = (D_\tau, R_\tau, \sigma_\tau)$,

- Build a new tree pair $(\hat{D}_\tau, \hat{R}_\tau, \hat{\sigma}_\tau)$ by “expanding v_τ” suitably.
The relation between V and $\mathbb{Q}Aut(\mathcal{T}_{2,c})$
The relation between V and $QAut(T_{2,c})$

- Replace every node w in D_{d_τ} by a caret (w, w_n, w_p),
The relation between V and $QAut(\mathcal{T}_{2,c})$

- Replace every node w in $D_{d\tau}$ by a caret (w, w_n, w_p),

Node with address w...

... becomes a caret in tree for V element.

(But, not at address w!)

\[W \]

\[W_n \quad W_p \]
The relation between V and $\text{QAut}(\mathcal{T}_{2,c})$

- Replace every node w in $D_{d\tau}$ by a caret (w, w_n, w_p),

Node with address w... ... becomes a caret in tree for V element.

(But, not at address w!)

- If $e_{\text{parent}}, e_{\text{left}}, e_{\text{right}}$ are the edges attached to w, attach e_{left} and e_{right} to the bottom of w_n and e_{parent} to the top of w,
The relation between V and $\mathcal{Q}\text{Aut}(T_{2,c})$
The relation between V and $\mathcal{QAut}(T_{2,c})$

- Apply σ_{d_T} to the n-leaves and b_{d_T} to the p-leaves.
The relation between V and $\mathcal{QAut}(T_{2,c})$

- Apply σ_{d_τ} to the n-leaves and b_{d_τ} to the p-leaves.
The relation between V and $\mathcal{QAut}(\mathcal{T}_{2,c})$

- Apply $\sigma_{d\tau}$ to the n-leaves and $b_{d\tau}$ to the p-leaves.
The relation between V and $\text{QAut}(\mathcal{T}_{2,c})$

- Apply σ_{d_τ} to the n-leaves and b_{d_τ} to the p-leaves.

Lehnert’s conjecture revisited
Thompson’s group V is the universal coCF group.
Work in progress on other subgroups of V

We are working on embedding other subgroups into V. Candidates we are looking at are surface groups:

\begin{align*}
\langle a_1, b_1, \ldots, a_n, b_n \mid [a_1, b_1] \ldots [a_n, b_n] \rangle \quad \text{(orientable)}
\end{align*}

\begin{align*}
\langle a_1, \ldots, a_n \mid a_2 \ldots a_n \rangle \quad \text{(non-orientable)}
\end{align*}

Recall:

- finite index subgroups of surface groups are still surface groups,
- there exist orientable double covers of non-orientable surfaces.

Theorem (Bleak-Salazar)

Let $H \leq V$. Any of its finite index overgroups is a subgroup of V.
We are working on embedding other subgroups into V.

Candidates we are looking at are surface groups:

\[
\langle a_1, b_1, \ldots, a_n, b_n \mid [a_1, b_1] \ldots [a_n, b_n] \rangle \text{ (orientable)}
\]

\[
\langle a_1, \ldots, a_n \mid a_2 \ldots a_n \rangle \text{ (non-orientable)}
\]

Recall:

- finite index subgroups of surface groups are still surface groups,
- there exist orientable double covers of non-orientable surfaces.

Theorem (Bleak-Salazar)

Let $H \leq V$. Any of its finite index overgroups is a subgroup of V.

Work in progress on other subgroups of V
We are working on embedding other subgroups into \(V \).

Candidates we are looking at are **surface groups**:

\[
\langle a_1, b_1, \ldots, a_n, b_n \mid [a_1, b_1] \ldots [a_n, b_n] \rangle \quad \text{(orientable)}
\]

\[
\langle a_1, \ldots, a_n \mid a_1^2 \ldots a_n^2 \rangle \quad \text{(non-orientable)}
\]
We are working on embedding other subgroups into V.

Candidates we are looking at are surface groups:

$$\langle a_1, b_1, \ldots, a_n, b_n \mid [a_1, b_1] \ldots [a_n, b_n]\rangle$$ \hspace{1cm} \text{(orientable)}$$

$$\langle a_1, \ldots, a_n \mid a_1^2 \ldots a_n^2\rangle$$ \hspace{1cm} \text{(non-orientable)}$$

Recall:

- finite index subgroups of surface groups are still surface groups,
- there exist orientable double covers of non-orientable surfaces.
We are working on embedding other subgroups into V.

Candidates we are looking at are **surface groups**:

$$\langle a_1, b_1, \ldots, a_n, b_n \mid [a_1, b_1] \ldots [a_n, b_n] \rangle \quad \text{(orientable)}$$

$$\langle a_1, \ldots, a_n \mid a_1^2 \ldots a_n^2 \rangle \quad \text{(non-orientable)}$$

Recall:

- finite index subgroups of surface groups are still surface groups,
- there exist orientable double covers of non-orientable surfaces.

Theorem (Bleak-Salazar)

Let $H \leq V$. Any of its finite index overgroups is a subgroup of V.
Work in progress on other subgroups of V

We are attempting to build a surface group inside V. If one exists, then every other surface group will be in V.

Question: Do surface groups embed in V?

Surface groups are special cases of these Fuchsian groups:

$$\langle a_1, b_1, \ldots, a_n, b_n, c_1, \ldots, c_t, c^{-1}_1, \ldots, c^{-1}_t | a_1, b_1 \ldots a_n, b_n \rangle,$$

$n, s, t \geq 0$

Theorem (Fricke-Klein, Hoare-Karrass-Solitar)

Any finite index group of a Fuchsian group of the type above is a Fuchsian group of the same type.

Question: Do Fuchsian groups embed in V?
We are attempting to build a surface group inside V.

Question

Do surface groups embed in V?

Surface groups are special cases of these Fuchsian groups:

$$\langle a_1, b_1, \ldots, a_n, b_n, c_1, \ldots, c_t, | c_{\gamma_1}^{-1} \ldots c_{\gamma_t}^{-1}, [a_1, b_1] \ldots [a_n, b_n] \rangle, \quad n, s, t \geq 0$$

Theorem (Fricke-Klein, Hoare-Karrass-Solitar)

Any finite index group of a Fuchsian group of the type above is a Fuchsian group of the same type.

Question

Do Fuchsian groups embed in V?
We are attempting to build a surface group inside V. If one exists, then every other surface group will be in V.
Work in progress on other subgroups of \(V \)

We are attempting to build a surface group inside \(V \).

If one exists, then every other surface group will be in \(V \).

Question

Do surface groups embed in \(V \)?
We are attempting to build a surface group inside V. If one exists, then every other surface group will be in V.

Question
Do surface groups embed in V?

Surface groups are special cases of these **Fuchsian groups**:

\[
\langle a_1, b_1, \ldots, a_n, b_n, c_1, \ldots, c_t, \mid c_1^{\gamma_1}, \ldots, c_t^{\gamma_t},
\]

\[
c_1^{-1} \ldots c_t^{-1}[a_1, b_1] \ldots [a_n, b_n]\rangle, \quad n, s, t \geq 0
\]

Theorem (Fricke-Klein, Hoare-Karrass-Solitar)

Any finite index group of a Fuchsian group of the type above is a Fuchsian group of the same type.
We are attempting to build a surface group inside V. If one exists, then every other surface group will be in V.

Question

Do surface groups embed in V?

Surface groups are special cases of these **Fuchsian groups**:

$$\langle a_1, b_1, \ldots, a_n, b_n, c_1, \ldots, c_t, | \ c_1^{\gamma_1}, \ldots, c_t^{\gamma_t},$$

$$c_1^{-1} \ldots c_t^{-1} [a_1, b_1] \ldots [a_n, b_n]\rangle, \ n, s, t \geq 0$$

Theorem (Fricke-Klein, Hoare-Karrass-Solitar)

Any finite index group of a Fuchsian group of the type above is a Fuchsian group of the same type.

Question

Do Fuchsian groups embed in V?