On the influence of subgroups on the structure of finite groups

Izabela Agata Malinowska

Institute of Mathematics
University of Białystok, Poland

St Andrews, 3-11.08.2013
All groups considered here are finite.

A group G is *Dedekind* if every subgroup of G is normal in G.

Theorem (R. Dedekind, 1896)

A group G is Dedekind if and only if G is abelian or G is a direct product of the quaternion group Q_8 of order 8, an elementary abelian 2-group and an abelian group of odd order.
All groups considered here are finite.

A group G is **Dedekind** if every subgroup of G is normal in G.

Theorem (R. Dedekind, 1896)

A group G is Dedekind if and only if G is abelian or G is a direct product of the quaternion group Q_8 of order 8, an elementary abelian 2-group and an abelian group of odd order.
A subgroup H of a group G is \textit{permutable} in a group G if $HK = KH$ whenever $K \leq G$.

\begin{center}
\textbf{Theorem (O. Ore, 1939)}

If H is a permutable subgroup of a group G, then H is subnormal in G.

\textbf{Theorem (K. Iwasawa, 1941)}

Let p be a prime. A p-group G is an Iwasawa group if and only if G is a Dedekind group, or G contains an abelian normal subgroup N such that G/N is cyclic and $G = \langle x \rangle N$ for an element x of G and $x = a + p^s$ for all $a \in N$, where $s \geq 1$ and $s \geq 2$ if $p = 2$.
\end{center}
A subgroup H of a group G is *permutable* in a group G if $HK = KH$ whenever $K \leq G$.

Theorem (O. Ore, 1939)

If H is a permutable subgroup of a group G, then H is subnormal in G.

Theorem (K. Iwasawa, 1941)

Let p be a prime. A p-group G is an Iwasawa group if and only if G is a Dedekind group, or G contains an abelian normal subgroup N such that G/N is cyclic and so $G = \langle x \rangle N$ for an element x of G and $x = a_1 + p^s$ for all $a \in N$, where $s \geq 1$ and $s \geq 2$ if $p = 2$.

Izabela Agata Malinowska

On the influence of subgroups on the structure of groups
A subgroup \(H \) of a group \(G \) is \textit{permutable} in a group \(G \) if \(HK = KH \) whenever \(K \leq G \).

\begin{quote}
\textbf{Theorem (O. Ore, 1939)}

If \(H \) is a permutable subgroup of a group \(G \), then \(H \) is subnormal in \(G \).
\end{quote}

A group \(G \) is an \textit{Iwasawa group} if every subgroup of \(G \) is permutable in \(G \).
A subgroup H of a group G is *permutable* in a group G if $HK = KH$ whenever $K \leq G$.

Theorem (O. Ore, 1939)

If H is a permutable subgroup of a group G, then H is subnormal in G.

A group G is an *Iwasawa group* if every subgroup of G is permutable in G.

Theorem (K. Iwasawa, 1941)

*Let p be a prime. A p-group G is an Iwasawa group if and only if G is a Dedekind group, or G contains an abelian normal subgroup N such that G/N is cyclic and so $G = \langle x \rangle N$ for an element x of G and $a^x = a^{1+p^s}$ for all $a \in N$, where $s \geq 1$ and $s \geq 2$ if $p = 2$.***
A subgroup of a group \(G \) is **s-permutable** in \(G \) if it permutes with all Sylow subgroups of \(G \).
A subgroup of a group G is **s-permutable** in G if it permutes with all Sylow subgroups of G.

Theorem (O.H. Kegel, 1962)

*If H is an s-permutable subgroup of G, then H is subnormal in G.***
The *nilpotent residual* of G is the smallest normal subgroup of G with nilpotent quotient.
Characterizations based on the normal structure

The *nilpotent residual* of G is the smallest normal subgroup of G with nilpotent quotient.

Definition

A group G is a *T-group* if every subnormal subgroup of G is normal in G.
The *nilpotent residual* of G is the smallest normal subgroup of G with nilpotent quotient.

Definition

A group G is a **T-group** if every subnormal subgroup of G is normal in G.

Examples of T-groups:
- Dedekind groups = nilpotent T-groups;
- simple groups.
Characterizations based on the normal structure

Theorem (W. Gaschütz, 1957)

A group G is a soluble T-group if and only if the following conditions are satisfied:

1. the nilpotent residual L of G is an abelian Hall subgroup of odd order;
2. G acts by conjugation on L as a group of power automorphisms, and
3. G/L is a Dedekind group.

Definition

A group G is said to be a PT-group when if H is a permutable subgroup of K and K is a permutable subgroup of G, then H is a permutable subgroup of G.

Izabela Agata Malinowska

On the influence of subgroups on the structure of groups
Characterizations based on the normal structure

Theorem (W. Gaschütz, 1957)

A group G is a soluble T-group if and only if the following conditions are satisfied:

1. the nilpotent residual L of G is an abelian Hall subgroup of odd order;
2. G acts by conjugation on L as a group of power automorphisms, and
3. G/L is a Dedekind group.

Definition

A group G is said to be a PT-group when if H is a permutable subgroup of K and K is a permutable subgroup of G, then H is a permutable subgroup of G.
Examples of PT-groups:

- T-groups;
- Iwasawa groups = nilpotent PT-groups.
Characterizations based on the normal structure

Examples of PT-groups:

- T-groups;
- Iwasawa groups = nilpotent PT-groups.

The PT-groups are exactly the groups in which every subnormal subgroup is permutable.
Characterizations based on the normal structure

Examples of PT-groups:

- T-groups;
- Iwasawa groups = nilpotent PT-groups.

The PT-groups are exactly the groups in which every subnormal subgroup is permutable.

Theorem (G. Zacher, 1964)

A group G is a soluble PT-group if and only if the following conditions are satisfied:

1. the nilpotent residual L of G is an abelian Hall subgroup of odd order;
2. G acts by conjugation on L as a group of power automorphisms, and
3. G/L is an Iwasawa group.
Definition

A group G is a \textit{PST-group} when if H is an s-permutable subgroup of K and K is an s-permutable subgroup of G, then H is an s-permutable subgroup of G.

Examples of \textit{PST}-groups: nilpotent groups; \textit{PT}-groups. The \textit{PST}-groups are exactly the groups in which every subnormal subgroup is s-permutable.
Characterizations based on the normal structure

Definition

A group G is a \textit{PST-group} when if H is an s-permutable subgroup of K and K is an s-permutable subgroup of G, then H is an s-permutable subgroup of G.

Examples of \textit{PST}-groups:

- nilpotent groups;
- \textit{PT}-groups.
Characterizations based on the normal structure

Definition

A group G is a PST-group when if H is an s-permutable subgroup of K and K is an s-permutable subgroup of G, then H is an s-permutable subgroup of G.

Examples of PST-groups:

- nilpotent groups;
- PT-groups.

The PST-groups are exactly the groups in which every subnormal subgroup is s-permutable.
Theorem (R.K. Agrawal, 1975)

Let G be a group with nilpotent residual L. The following statements are equivalent:

1. L is an abelian Hall subgroup of odd order in which G acts by conjugation as a group of power automorphisms;
2. G is a soluble PST-group.

Corollary

- G is a soluble PT-group if and only if G is a soluble PST-group whose Sylow subgroups are Iwasawa groups;
- G is a soluble T-group if and only if G is a soluble PST-group whose Sylow subgroups are Dedekind groups.
Theorem (R.K. Agrawal, 1975)

Let G be a group with nilpotent residual L. The following statements are equivalent:

1. L is an abelian Hall subgroup of odd order in which G acts by conjugation as a group of power automorphisms;
2. G is a soluble PST-group.

Corollary

Let G be a group.

1. G is a soluble PT-group if and only if G is a soluble PST-group whose Sylow subgroups are Iwasawa groups;
2. G is a soluble T-group if and only if G is a soluble PST-group whose Sylow subgroups are Dedekind groups.
In the soluble universe:

\[
\begin{array}{cccc}
T & \subseteq & PT & \subseteq \\
\subseteq & \subseteq & \subseteq & \subseteq \\
\text{Dedekind} & \subseteq & \text{Iwasawa} & \subseteq \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{supersoluble} & \subseteq & \text{nilpotent} & \subseteq \\
\subseteq & \subseteq & \subseteq & \subseteq \\
\end{array}
\]

Izabela Agata Malinowska

On the influence of subgroups on the structure of groups
If H is a subgroup of a group G, we denote by H^G the normal closure of H in G, that is, the smallest normal subgroup of G containing H.

Theorem (Y. Li, 2006)

Let G be a group. The following statements are equivalent:

1. G is a soluble T-group;
2. $N_G(H) \cap H^G = H$ for all subgroups H of G;
3. $N_G(H) \cap H^G = H$ for all p-subgroups H of G and every prime p.

Izabela Agata Malinowska

On the influence of subgroups on the structure of groups
Theorem (O.H. Kegel, 1962)

If H_1 and H_2 are two s-permutable subgroups of the group G, then $H_1 \cap H_2$ is an s-permutable subgroup of G. Consequently, the set of all s-permutable subgroups is a sublattice of the subnormal subgroup lattice.
Characterizations based on subgroup embedding properties

Theorem (O.H. Kegel, 1962)

If H_1 and H_2 are two s-permutable subgroups of the group G, then $H_1 \cap H_2$ is an s-permutable subgroup of G. Consequently, the set of all s-permutable subgroups is a sublattice of the subnormal subgroup lattice.

Definition

Let H be a subgroup of a group G.

1. The permutable closure $A_G(H)$ of H in G is the intersection of all permutable subgroups of G containing H.

2. The s-permutable closure $B_G(H)$ of H in G is the intersection of all s-permutable subgroups of G containing H.
Example

Assume that p is an odd prime,

$$A = \langle a, b \mid a^{p^2} = b^p = 1, a^b = a^{1+p} \rangle$$

is an extraspecial group of order p^3 and exponent p^2 and $Z = \langle z \rangle$ is a cyclic group of order p^2. Consider $G = A \times Z$. Then $A \triangleleft G$ and $B = \langle b \rangle \times \langle z \rangle$ is permutable in G since $\langle b \rangle$ is permutable in A. But $A \cap B = \langle b \rangle$ is not permutable in G, since $\langle b \rangle$ does not permute with $\langle az \rangle$. For a subgroup $H = \langle b \rangle$, the permutable closure $A_G(H) = H$ is not permutable in G.

Izabela Agata Malinowska

On the influence of subgroups on the structure of groups
Theorem (A. Ballester-Bolinches, R. Esteban-Romero, Y. Li, 2010)

Let G be a group. The following statements are equivalent:

1. G is a soluble PT-group;
2. $N_G(H) \cap A_G(H) = H$ for every subgroup H of G;

Izabela Agata Malinowska
On the influence of subgroups on the structure of groups
Characterizations based on subgroup embedding properties

Theorem (A. Ballester-Bolinches, R. Esteban-Romero, Y. Li, 2010)

Let G be a group. The following statements are equivalent:

1. G is a soluble PT-group;
2. $N_G(H) \cap A_G(H) = H$ for every subgroup H of G;

Theorem (A. Ballester-Bolinches, R. Esteban-Romero, Y. Li, 2010)

Let G be a group. The following statements are equivalent:

1. G is a soluble PST-group;
2. $N_G(H) \cap B_G(H) = H$ for every subgroup H of G;
A subgroup H of a group G is an \textit{NR-subgroup} of G (Normal Restriction) if, whenever $K \trianglelefteq H$, $K^G \cap H = K$.

Example

Let $G = A_5$, the alternating group of degree 5. Then every 5-subgroup of G is an NR-subgroup of G, a PR-subgroup of G and an sPR-subgroup of G. Let $H = \langle (12345) \rangle$. Hence $|N^G(H)| = 10$ and $H^G \cap N^G(H) = N^G(H) \cap B^G(H) = N^G(H) \neq H$.

Izabela Agata Malinowska
On the influence of subgroups on the structure of groups
A subgroup \(H \) of a group \(G \) is an **NR-subgroup** of \(G \) (Normal Restriction) if, whenever \(K \trianglelefteq H \), \(K^G \cap H = K \).

A subgroup \(H \) of a group \(G \) is said to be a **PR-subgroup** of \(G \) (Permutable Restriction) if, whenever \(K \trianglelefteq H \), \(A_G(K) \cap H = K \).
A subgroup H of a group G is an **NR-subgroup** of G (Normal Restriction) if, whenever $K \trianglelefteq H$, $K^G \cap H = K$.

A subgroup H of a group G is said to be a **PR-subgroup** of G (Permutable Restriction) if, whenever $K \trianglelefteq H$, $A_G(K) \cap H = K$.

A subgroup H of a group G is said to be an **sPR-subgroup** of G (s-Permutable Restriction) if, whenever $K \trianglelefteq H$, $B_G(K) \cap H = K$.

Example

Let $G = A_5$, the alternating group of degree 5. Then every 5-subgroup of G is an NR-subgroup of G, a PR-subgroup of G and an sPR-subgroup of G. Let $H = \langle (12345) \rangle$. Hence $|N_G(H)| = 10$ and $H^G \cap N_G(H) = N_G(H) \cap A_G(H) = N_G(H) \neq H$.

Izabela Agata Malinowska

On the influence of subgroups on the structure of groups
A subgroup H of a group G is an **NR-subgroup** of G (Normal Restriction) if, whenever $K \trianglelefteq H$, $K^G \cap H = K$.

A subgroup H of a group G is said to be a **PR-subgroup** of G (Permutable Restriction) if, whenever $K \trianglelefteq H$, $A_G(K) \cap H = K$.

A subgroup H of a group G is said to be an **sPR-subgroup** of G (s-Permutable Restriction) if, whenever $K \trianglelefteq H$, $B_G(K) \cap H = K$.

Example

Let $G = A_5$, the alternating group of degree 5. Then every 5-subgroup of G is an NR-subgroup of G, a PR-subgroup of G and an sPR-subgroup of G. Let $H = \langle (12345) \rangle$. Hence $|N_G(H)| = 10$ and $H^G \cap N_G(H) = N_G(H) \cap A_G(H) = N_G(H) \cap B_G(H) = N_G(H) \neq H$.

Izabela Agata Malinowska

On the influence of subgroups on the structure of groups
Example

Let G be the semidirect product of a quaternion group P of order 8 with a cyclic group Q of order 3, which induces an automorphism permuting cyclically the three maximal subgroups of the quaternion group. Then every 3-subgroup of G is an NR-subgroup of G, a PR-subgroup of G and an sPR-subgroup of G. But

$$Q^G \cap N_G(Q) = A_G(Q) \cap N_G(Q) = B_G(Q) \cap N_G(Q) = G \cap QP' = QP' \neq Q.$$
Theorem (I.A.M., 2012)

Let G be a group. The following statements are equivalent:

1. G is a soluble T-group;
2. each subgroup of G is an NR-subgroup of G;
3. for each prime $p \in \pi(G)$, each p-subgroup of G is an NR-subgroup of G.
A subgroup H of a group G is \textit{normal sensitive in G} if the following holds:
\[
\{ N \mid N \text{ is normal in } H \} = \{ H \cap W \mid W \text{ is normal in } G \}.
\]
A subgroup H of a group G is *normal sensitive in G* if the following holds:

$$\{ N \mid N \text{ is normal in } H \} = \{ H \cap W \mid W \text{ is normal in } G \}.$$

Theorem (S. Bauman, 1974)

Every subgroup of a group G is normal sensitive in G if and only if G is a soluble T-group.
A subgroup H of a group G is normal sensitive in G if the following holds:

$$\{ N \mid N \text{ is normal in } H \} = \{ H \cap W \mid W \text{ is normal in } G \}.$$

Theorem (S. Bauman, 1974)

Every subgroup of a group G is normal sensitive in G if and only if G is a soluble T-group.

Corollary (I.A.M., 2012)

A group G is a soluble T-group if and only if for every $p \in \pi(G)$, every p-subgroup of G is normal sensitive in G.
Theorem (I.A.M., 2012)

Let G be a group. The following statements are equivalent:

1. G is a soluble PT-group;
2. each subgroup of G is a PR-subgroup of G;
3. for each prime $p \in \pi(G)$, each p-subgroup of G is a PR-subgroup of G.

A subgroup H of a group G is permutable sensitive in G if the following holds:

$$\left\{ N \mid N \text{ is permutable in } H \right\} = \left\{ H \cap W \mid W \text{ is permutable in } G \right\}.$$

Theorem (J.C. Beidleman, M.F. Rangland, 2007)

Every subgroup of a group G is permutable sensitive in G if and only if G is a soluble PT-group.
Theorem (I.A.M., 2012)

Let G be a group. The following statements are equivalent:

1. G is a soluble PT-group;
2. each subgroup of G is a PR-subgroup of G;
3. for each prime $p \in \pi(G)$, each p-subgroup of G is a PR-subgroup of G.

A subgroup H of a group G is permutable sensitive in G if the following holds:

$$\{N \mid N \text{ is permutable in } H\} = \{H \cap W \mid W \text{ is permutable in } G\}.$$
Theorem (I.A.M., 2012)

Let G be a group. The following statements are equivalent:

1. G is a soluble PT-group;
2. each subgroup of G is a PR-subgroup of G;
3. for each prime $p \in \pi(G)$, each p-subgroup of G is a PR-subgroup of G.

A subgroup H of a group G is *permutable sensitive in G* if the following holds:

$$\{N \mid N \text{ is permutable in } H\} = \{H \cap W \mid W \text{ is permutable in } G\}.$$

Theorem (J.C. Beidleman, M.F. Rangland, 2007)

Every subgroup of a group G is permutable sensitive in G if and only if G is a soluble PT-group.
Corollary (I.A.M., 2012)

A group G is a soluble PT-group if and only if for every $p \in \pi(G)$, every p-subgroup of G is permutable sensitive in G.
Corollary (I.A.M., 2012)

A group G is a soluble PT-group if and only if for every $p \in \pi(G)$, every p-subgroup of G is permutable sensitive in G.

Example

Let $P = \langle a, b \mid a^3 = b^{3^2} = 1, b^a = b^{4^2} \rangle$ be a metacyclic group of order 3^3 and exponent 3^2. Let x be the automorphism of P of order 2 given by $a^x = a$, $b^x = b^{-1}$. Let $H = P \rtimes \langle x \rangle$ be the corresponding semidirect product and let $G = H \rtimes C$, where $C = \langle c \rangle$ is cyclic of order 3. Then a subgroup $\langle a, bc \rangle$ is a PR-subgroup of G. But it is not permutable sensitive in G.
Theorem (I.A.M., 2012)

Let G be a group. The following statements are equivalent:

1. G is a soluble PST-group;
2. each subgroup of G is an sPR-subgroup of G;
3. for each prime $p \in \pi(G)$, every p-subgroup of G is an sPR-subgroup of G.

A subgroup H of a group G is s-permutable sensitive in G if the following holds:

\[\{N \mid N \text{ is s-permutable in } H\} = \{H \cap W \mid W \text{ is s-permutable in } G\}. \]
Theorem (I.A.M., 2012)

Let G be a group. The following statements are equivalent:

1. G is a soluble PST-group;
2. each subgroup of G is an sPR-subgroup of G;
3. for each prime $p \in \pi(G)$, every p-subgroup of G is an sPR-subgroup of G.

A subgroup H of a group G is s-permutable sensitive in G if the following holds:
\[\{ N \mid N \text{ is } s\text{-permutable in } H \} = \{ H \cap W \mid W \text{ is } s\text{-permutable in } G \}. \]
Characterizations based on subgroup embedding properties

Theorem (I.A.M., 2012)

Let G be a group. The following statements are equivalent:

1. G is a soluble PST-group;
2. each subgroup of G is an sPR-subgroup of G;
3. for each prime $p \in \pi(G)$, every p-subgroup of G is an sPR-subgroup of G.

A subgroup H of a group G is *s-permutable sensitive in G* if the following holds:

$$\{ N \mid N \text{ is } s\text{-permutable in } H \} = \{ H \cap W \mid W \text{ is } s\text{-permutable in } G \}.$$

Theorem (J.C. Beidleman, M.F. Rangland, 2007)

Every subgroup of a group G is *s-permutable sensitive in G* if and only if G is a soluble PST-group.
Corollary (I.A.M., 2012)

A group G is a soluble PST-group if and only if for every $p \in \pi(G)$, every p-subgroup of G is s-permutable sensitive in G.

Example

Let G be the direct product of a symmetric group of degree 4 and a cyclic group of order 2. Let $H = \langle (1, 2), (1, 3)(2, 4)(5, 6), (1, 2)(3, 4) \rangle$ (here $(5, 6)$ generates the cyclic subgroup of order 2). Then H is an sPR-subgroup of G, but it is not s-permutable sensitive in G.

Izabela Agata Malinowska

On the influence of subgroups on the structure of groups
Corollary (I.A.M., 2012)

A group G is a soluble PST-group if and only if for every $p \in \pi(G)$, every p-subgroup of G is s-permutable sensitive in G.

Example

Let G be the direct product of a symmetric group of degree 4 and a cyclic group of order 2. Let $H = \langle (1, 2), (1, 3)(2, 4)(5, 6), (1, 2)(3, 4) \rangle$ (here $(5, 6)$ generates the cyclic subgroup of order 2). Then H is an sPR-subgroup of G, but it is not s-permutable sensitive in G.
A subgroup H of G is an \mathcal{H}-subgroup of G if $N_G(H) \cap H^g \leq H$ for all $g \in G$.
Local characterizations

A subgroup H of G is an \mathcal{H}-subgroup of G if $N_G(H) \cap H^g \leq H$ for all $g \in G$.

Let p be a prime. A group G satisfies:

- **the property NR_p** if a Sylow p-subgroup of G is an NR-subgroup of G;
- **the property H_p** if every maximal subgroup of a Sylow p-subgroup of G is an \mathcal{H}-subgroup of G.

Theorem (I.A.M., 2012)

Let G be a group. The following conditions are equivalent:

1. G is a soluble PST-group;
2. every subgroup of G satisfies NR_p for every prime $p \in \pi(G)$;
3. every subgroup of G satisfies H_p for every prime $p \in \pi(G)$.
A subgroup H of G is an \mathcal{H}-subgroup of G if $N_G(H) \cap H^g \leq H$ for all $g \in G$.

Let p be a prime. A group G satisfies:

- the property NR_p if a Sylow p-subgroup of G is an NR-subgroup of G;
- the property \mathcal{H}_p if every maximal subgroup of a Sylow p-subgroup of G is an \mathcal{H}-subgroup of G.

Theorem (I.A.M., 2012)

Let G be a group. The following conditions are equivalent:

1. G is a soluble PST-group;
2. every subgroup of G satisfies NR_p for every prime $p \in \pi(G)$;
3. every subgroup of G satisfies \mathcal{H}_p for every prime $p \in \pi(G)$.

Izabela Agata Malinowska
On the influence of subgroups on the structure of groups
Theorem (I.A.M., 2012)

Let G be a group all of whose second maximal subgroups of even order are soluble PST-groups. Then G is either a soluble group or one of the following groups:

1. $\text{PSL}(2, 2^f)$, where f is a prime such that $2^f - 1$ is a prime;
2. $\text{PSL}(2, p)$, where p is a prime with $p > 3$, $p^2 - 1 \not\equiv 0 \pmod{5}$ and $p \equiv 3$ or $5 \pmod{8}$;
3. $\text{PSL}(2, 3^f)$, where f is an odd prime and $3^f \equiv 3 \pmod{8}$;
4. $\text{SL}(2, 3^f)$, where f is an odd prime, $3^f \equiv 3 \pmod{8}$ and $(3^f - 1)/2$ is a prime;
5. $\text{SL}(2, p)$, where p is a prime with $p > 3$, $p^2 - 1 \not\equiv 0 \pmod{5}$ and $p \equiv 3$ or $5 \pmod{8}$;
Theorem (I.A.M., 2012)

Let G be a group all of whose second maximal subgroups are soluble PST-groups. Then G is either a soluble group or one of the following groups:

1. $\text{PSL}(2, 2^f)$, where f is a prime such that $2^f - 1$ is a prime;
2. $\text{PSL}(2, p)$, where p is a prime with $p > 3$, $p^2 - 1 \not\equiv 0 \pmod{5}$ and $p \equiv 3$ or $5 \pmod{8}$;
3. $\text{PSL}(2, 3^f)$, where f is an odd prime, $3^f \equiv 3 \pmod{8}$ and $(3^f - 1)/2$ is a prime;
4. $\text{SL}(2, p)$, where p is a prime with $p > 3$, $p^2 - 1 \not\equiv 0 \pmod{5}$ and $p \equiv 3$ or $5 \pmod{8}$.
Let p be a prime number.
Let p be a prime number.

a group G satisfies the property C_p if every subgroup of a Sylow p-subgroup P of G is normal in its normalizer $N_G(P)$,
Let p be a prime number.

a group G satisfies the property C_p if every subgroup of a Sylow p-subgroup P of G is normal in its normalizer $N_G(P),$

G satisfies X_p if every subgroup of a Sylow p-subgroup P of G is permutable in $N_G(P),$

Theorem (A. Ballester-Bolinches, R. Esteban-Romero, 2002)

A group G satisfies X_p (respectively, C_p) if and only if G satisfies Y_p and the Sylow p-subgroups of G are Iwasawa (respectively, Dedekind).
Let p be a prime number.

A group G satisfies the property C_p if every subgroup of a Sylow p-subgroup P of G is normal in its normalizer $N_G(P)$.

G satisfies X_p if every subgroup of a Sylow p-subgroup P of G is permutable in $N_G(P)$.

G satisfies Y_p if, whenever H and K are p-subgroups of G with $H \leq K$, H is s-permutable in $N_G(K)$.

Theorem (A. Ballester-Bolinches, R. Esteban-Rormero, 2002)

A group G satisfies X_p (respectively, C_p) if and only if G satisfies Y_p and the Sylow p-subgroups of G are Iwasawa (respectively, Dedekind).
Local characterizations

Let p be a prime number.

A group G satisfies the property \mathcal{C}_p if every subgroup of a Sylow p-subgroup P of G is normal in its normalizer $N_G(P)$,

G satisfies \mathcal{X}_p if every subgroup of a Sylow p-subgroup P of G is permutuble in $N_G(P)$,

G satisfies \mathcal{Y}_p if, whenever H and K are p-subgroups of G with $H \leq K$, H is s-permutable in $N_G(K)$.

Theorem (A. Ballester-Bolinches, R. Esteban-Romero, 2002)

A group G satisfies \mathcal{X}_p (respectively, \mathcal{C}_p) if and only if G satisfies \mathcal{Y}_p and the Sylow p-subgroups of G are Iwasawa (respectively, Dedekind).
Let p be a prime.

\[
\begin{align*}
\mathcal{C}_p & \subsetneq \mathcal{X}_p & \subsetneq \mathcal{Y}_p \\
\text{Dedekind } p\text{-groups} & \subsetneq \text{Iwasawa } p\text{-groups} & \subsetneq p\text{-groups}
\end{align*}
\]
Theorem (D.J.S. Robinson, 1968)

A group G is a soluble T-group if and only if G satisfies C_p for all $p \in \pi(G)$.

Theorem (J.C. Beidleman, B. Brewster, D.J.S. Robinson, 1999)

A group G is a soluble PT-group if and only if G satisfies X_p for all $p \in \pi(G)$.

Theorem (A. Ballester-Bolinches, R. Esteban-Romero, 2002)

A group G a soluble PST-group if and only if G satisfies Y_p for all $p \in \pi(G)$.
Theorem (D.J.S. Robinson, 1968)

A group G is a soluble T-group if and only if G satisfies C_p for all $p \in \pi(G)$.

Theorem (J.C. Beidleman, B. Brewster, D.J.S. Robinson, 1999)

A group G is a soluble PT-group if and only if G satisfies X_p for all $p \in \pi(G)$.
Local characterizations

Theorem (D.J.S. Robinson, 1968)

A group G is a soluble T-group if and only if G satisfies C_p for all $p \in \pi(G)$.

Theorem (J.C. Beidleman, B. Brewster, D.J.S. Robinson, 1999)

A group G is a soluble PT-group if and only if G satisfies χ_p for all $p \in \pi(G)$.

Theorem (A. Ballester-Bolinches, R. Esteban-Romero, 2002)

A group G is a soluble PST-group if and only if G satisfies γ_p for all $p \in \pi(G)$.
Local characterizations

A subgroup H of a group G is said to be \textit{pronormal in G} if for every $g \in G$, H and H^g are conjugate in their join $\langle H, H^g \rangle$.

A group G satisfies \textit{the property H_p} if every normal subgroup of a Sylow p-subgroup of G is pronormal in G.

Theorem

Let G be a group and let p be a prime. Then:

2. (J.C. Beidleman, B. Brewster, D.J.S. Robinson, 1999) G satisfies X_p if and only if G satisfies H_p and G has Iwasawa Sylow p-subgroups.

Proposition

Let G be a group and let p be a prime.

1. If G satisfies NR_p, then G satisfies the property H_p.
2. If G satisfies NR_p, then G satisfies the property H_p.

Izabela Agata Malinowska

On the influence of subgroups on the structure of groups
Local characterizations

A subgroup H of a group G is said to be **pronormal in G** if for every $g \in G$, H and H^g are conjugate in their join $\langle H, H^g \rangle$.

A group G satisfies the property \mathbf{H}_p if every normal subgroup of a Sylow p-subgroup of G is pronormal in G.

Theorem

Let G be a group and let p be a prime. Then:

1. (A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, 2010) G satisfies \mathbf{Y}_p if and only if every subgroup of G satisfies \mathbf{H}_p;
2. (J.C. Beidleman, B. Brewster, D.J.S. Robinson, 1999) G satisfies \mathbf{X}_p if and only if G satisfies \mathbf{H}_p and G has Iwasawa Sylow p-subgroups.
Local characterizations

A subgroup H of a group G is said to be *pronormal in G* if for every $g \in G$, H and H^g are conjugate in their join $\langle H, H^g \rangle$.

A group G satisfies *the property H_p* if every normal subgroup of a Sylow p-subgroup of G is pronormal in G.

Theorem

Let G be a group and let p be a prime. Then:

1. (A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, 2010) G satisfies \mathcal{Y}_p if and only if every subgroup of G satisfies H_p;
2. (J.C. Beidleman, B. Brewster, D.J.S. Robinson, 1999) G satisfies \mathcal{X}_p if and only if G satisfies H_p and G has Iwasawa Sylow p-subgroups.

Proposition

Let G be a group and let p be a prime.

1. If G satisfies NR_p, then G satisfies the property H_p.
2. If G satisfies NR_p, then G satisfies the property H_p.

Izabela Agata Malinowska
On the influence of subgroups on the structure of groups
Example
Let p be an odd prime and let $A = \langle a, b, c \mid a^p = b^p = c^p = 1, [a, b] = c \rangle$ be an extraspecial group of order p^3 and exponent p. Let $B = \langle x \rangle$ be a cyclic group of order p and $P = A \times B$. Let y be an automorphism of P of order 2 given by $a^y = a^{-1}$, $b^y = b^{-1}$, $x^y = x^{-1}$. Let $G = P \rtimes \langle y \rangle$ be the corresponding semidirect product. Then every maximal subgroup of P is normal in G, so is an \mathcal{H}-subgroup of G. Hence G satisfies \mathcal{H}_p. But $H = \langle xc \rangle$ is normal in P, $\langle xc \rangle^y = \langle x^{-1}c \rangle$, $\langle xc \rangle$ and $\langle x^{-1}c \rangle$ are not conjugate in $\langle x, c \rangle$. Therefore G satisfies neither \mathcal{H}_p nor $\mathcal{N}\mathcal{R}_p$.
Theorem (I.A.M., 2012)

Let p be a prime and let G be a p-soluble group. Then every subgroup of G satisfies H_p if and only if every subgroup of G satisfies NR_p.

Izabela Agata Malinowska

On the influence of subgroups on the structure of groups
Theorem (I.A.M., 2012)

Let \(p \) be a prime and let \(G \) be a \(p \)-soluble group. Then every subgroup of \(G \) satisfies \(H_p \) if and only if every subgroup of \(G \) satisfies \(NR_p \).

Theorem (I.A.M., 2012)

Let \(p \) be a prime and let \(G \) be a \(p \)-soluble group. Then \(G \) satisfies \(H_p \) if and only if \(G \) satisfies \(NR_p \).
Theorem (I.A.M., 2012)

Let p be a prime and let G be a p-soluble group. Then every subgroup of G satisfies H_p if and only if every subgroup of G satisfies NR_p.

Theorem (I.A.M., 2012)

Let p be a prime and let G be a p-soluble group. Then G satisfies H_p if and only if G satisfies NR_p.

Theorem (I.A.M., 2012)

Let p be a prime and let G be a p-soluble group. Then every subgroup of G satisfies NR_p if and only if every subgroup of G satisfies H_p.
Local characterizations

Example

Let $G = PSL(2, 53)$. Since a Sylow 3-subgroup of G is cyclic of order 3^3, G and its subgroups satisfy H_3 and H_3, but G does not satisfy NR_3.
Local characterizations

Example

Let $G = PSL(2, 53)$. Since a Sylow 3-subgroup of G is cyclic of order 3^3, G and its subgroups satisfy H_3 and \mathcal{H}_3, but G does not satisfy NR_3.

Question

Let G be a non-p-soluble group. Is it true that every subgroup of G satisfies H_p if and only if every subgroup of G satisfies \mathcal{H}_p?
Local characterizations

Example

Let $G = PSL(2, 53)$. Since a Sylow 3-subgroup of G is cyclic of order 3^3, G and its subgroups satisfy H_3 and H_3, but G does not satisfy NR_3.

Question

Let G be a non-p-soluble group. Is it true that every subgroup of G satisfies H_p if and only if every subgroup of G satisfies H_p?

Question

Assume that G is a p-soluble group and G has Iwasawa Sylow p-subgroups. Is it true that G satisfies NR_p if and only if G satisfies H_p?
Corollary (I.A.M., 2012)

Let p be a prime and let G be a p-soluble group. Then:

1. G satisfies γ_p if and only if every subgroup of G satisfies NR_p.
2. G satisfies χ_p if and only if G satisfies NR_p and G has Iwasawa Sylow p-subgroups.
Corollary (I.A.M., 2012)

Let p be a prime and let G be a p-soluble group. Then:

1. G satisfies γ_p if and only if every subgroup of G satisfies NR_p.
2. G satisfies χ_p if and only if G satisfies NR_p and G has Iwasawa Sylow p-subgroups.

Theorem (I.A.M., 2012)

Let G be a group. The following conditions are equivalent:

1. G is a soluble PT-group;
2. G satisfies NR_p and G has Iwasawa Sylow p-subgroups for all $p \in \pi(G)$.

(2) I.A. Malinowska, *Finite groups with NR-subgroups or their generalizations*, J. Group Theory **15** (2012), 687–707.

and references in them.
Thank you