Commuting probability and commutator relations

Urban Jezernik

joint with Primož Moravec

Institute of Mathematics, Physics, and Mechanics
University of Ljubljana, Slovenia

Groups St Andrews 2013
Commuting probability

Let G be a *finite* group. The probability that a randomly chosen pair of elements of G commute is called the **commuting probability** of G.

$$cp(G) = \frac{|\{(x, y) \in G \times G \mid [x, y] = 1\}|}{|G|^2}$$

- $cp(G) = k(G)/|G|$
 Erdös, Turán 1968
Commuting probability

Let G be a finite group. The probability that a randomly chosen pair of elements of G commute is called the commuting probability of G.

$$\text{cp}(G) = \frac{|\{(x,y) \in G \times G \mid [x,y] = 1\}|}{|G|^2}$$

- $\text{cp}(G) = k(G)/|G|$
 \hspace{1.5in} Erdös, Turán 1968

Outlook

- Global Analyse the image of cp.
- Local Study the impact $\text{cp}(G)$ has on the structure of G.
Commuting probability globally
As a function on groups of order ≤ 256
Commuting probability globally
As a function on groups of order $\leq 256 +$
Conjecture (Joseph 1977)

1. The limit points of \(\text{im cp} \) are rational.
2. If \(\ell \) is a limit point of \(\text{im cp} \), then there is an \(\varepsilon > 0 \) such that \(\text{im cp} \cap (\ell - \varepsilon, \ell) = \emptyset \).
3. \(\text{im cp} \cup \{0\} \) is a closed subset of \([0, 1]\).

• 1. and 2. hold for limit points \(\geq 2/9 \).
 Hegarty 2012
Commuting probability locally

As a measure of being abelian

- If $\text{cp}(G) > 5/8$, then G is abelian.
 Gustafson 1973
- If $\text{cp}(G) > 1/2$, then G is nilpotent.
 Lescot 1988
- $\text{cp}(G) < |G : \text{Fit}(G)|^{-1/2}$
 Guralnick, Robinson 2006
Commuting probability locally

As a measure of being abelian

- If $\text{cp}(G) > 5/8$, then G is abelian.
 Gustafson 1973
- If $\text{cp}(G) > 1/2$, then G is nilpotent.
 Lescot 1988
- $\text{cp}(G) < |G : \text{Fit}(G)|^{-1/2}$
 Guralnick, Robinson 2006

General principle

Bounding $\text{cp}(G)$ away from zero ensures abelian-like properties of G.
The exterior square $G \wedge G$ of G is the group generated by the symbols $x \wedge y$ for all $x, y \in G$, subject to universal commutator relations:

$$x \wedge x = 1, \quad xy \wedge z = (x^y \wedge z^y)(y \wedge z), \quad x \wedge yz = (x \wedge z)(x^z \wedge y^z).$$
Commuting probability locally

Setting up the terrain

The **exterior square** $G \wedge G$ of G is the group generated by the symbols $x \wedge y$ for all $x, y \in G$, subject to *universal commutator relations*:

$$x \wedge x = 1, \quad xy \wedge z = (x^y \wedge z^y)(y \wedge z), \quad x \wedge yz = (x \wedge z)(x^z \wedge y^z).$$

The **curly exterior square** $G \circlearrowleft G$ of G is the group generated by the symbols $x \circlearrowleft y$ for all $x, y \in G$, subject to *universal commutator relations, but without redundancies*, i.e.

$$G \circlearrowleft G = \frac{G \wedge G}{\langle x \wedge y \mid [x, y] = 1 \rangle}.$$
Commuting probability locally

Bogomolov multiplier

There is a natural commutator homomorphism $\kappa : G \ltimes G \to [G, G]$.

The kernel of κ consists of non-universal commutator relations. This is the **Bogomolov multiplier** of the group G, denoted by $B_0(G)$.
There is a natural commutator homomorphism $\kappa : G \rtimes G \to [G, G]$.

The kernel of κ consists of non-universal commutator relations. This is the **Bogomolov multiplier** of the group G, denoted by $B_0(G)$.

The group $B_0(G)$ is isomorphic to the unramified Brauer group of G, an obstruction to Noether’s problem of stable rationality of fixed fields.

- $\text{Br}_{nr}(\mathbb{C}(G)/\mathbb{C})$ embeds into $H^2(G, \mathbb{Q}/\mathbb{Z})$. Bogomolov 1987
- The image of the embedding is $B_0(G)^*$. Moravec 2012
Commuting probability locally

Bogomolov multiplier: examples

$B_0 = 0$

- Abelian-by-cyclic groups
- Finite simple groups
- Frobenius groups with abelian kernel
- p-groups of order $\leq p^4$
- Most groups of order p^5
- Unitriangular p-groups

$B_0 \neq 0$

- Smallest possible order is 64.
- $\langle a, b, c, d \mid [a, b] = [c, d], \exp 4, \cl 2 \rangle$

Bogomolov 1988
Kunyavskiǐ 2010
Moravčik 2012
Bogomolov 1988
Moravčik 2012
Chu, Hu, Kang, Kunyavskiǐ 2010
Commuting probability locally
The general principle universally

Theorem
If \(\text{cp}(G) > 1/4 \), then \(B_0(G) = 0 \).
Commuting probability locally

The general principle universally

Theorem

If \(cp(G) > 1/4 \), then \(B_0(G) = 0 \).

Outline of proof

Assume that \(G \) is a group of the smallest possible order satisfying \(cp(G) > 1/4 \) and \(B_0(G) \neq 0 \). By standard arguments, \(G \) is a stem \(p \)-group.

Proper subgroups and quotients of \(G \) have a larger commuting probability than \(G \), so: \(B_0(G) \neq 0 \), but all proper subgroups and quotients of \(G \) have a trivial Bogomolov multiplier. Groups with the latter property are called \(B_0 \)-minimal.
A B_0-minimal group enjoys the following properties.

- Is a capable p-group with an abelian Frattini subgroup.
- Is of Frattini rank ≤ 4.
- For stem groups, the exponent is bounded by a function of class alone.
B_0-minimal groups

A B_0-minimal group enjoys the following properties.

- Is a capable p-group with an abelian Frattini subgroup.
- Is of Frattini rank ≤ 4.
- For stem groups, the exponent is bounded by a function of class alone.

- Given the nilpotency class, there are only finitely many isoclinism families containing a B_0-minimal group of this class.
- Classification of B_0-minimal groups of class 2, hence of class 2 groups of orders p^7 with non-trivial Bogomolov multipliers.
- Construction of a sequence of 2-groups with non-trivial Bogomolov multipliers and arbitrarily large nilpotency class.
Theorem

If \(\text{cp}(G) > 1/4 \), then \(B_0(G) = 0 \).

Outline of proof

Assume that \(G \) is a group of the smallest possible order satisfying \(\text{cp}(G) > 1/4 \) and \(B_0(G) \neq 0 \). By standard arguments, \(G \) is a stem \(p \)-group.

Proper subgroups and quotients of \(G \) have a larger commuting probability than \(G \), so: \(B_0(G) \neq 0 \), but all proper subgroups and quotients of \(G \) have a trivial Bogomolov multiplier. Groups with the latter property are called \(B_0 \)-minimal.
Commuting probability locally
The general principle universally

Theorem
If \(cp(G) > 1/4 \), then \(B_0(G) = 0 \).

Outline of proof
Assume that \(G \) is a group of the smallest possible order satisfying \(cp(G) > 1/4 \) and \(B_0(G) \neq 0 \). By standard arguments, \(G \) is a stem \(p \)-group.

Proper subgroups and quotients of \(G \) have a larger commuting probability than \(G \), so: \(B_0(G) \neq 0 \), but all proper subgroups and quotients of \(G \) have a trivial Bogomolov multiplier. Groups with the latter property are called \(B_0 \)-minimal.

Considering the structure of \(B_0 \)-minimal groups of coclass 3, use the class equation to obtain bounds on the sizes of conjugacy classes of a suitably chosen generating set of \(G \). This restricts the nilpotency class of \(G \). Finish with the help of NQ.