A non-embedding result for Thompson’s Group V

Nathan Corwin

University of Nebraska – Lincoln

Groups St Andrews 2013

7 August 2013

s-ncorwin1@math.unl.edu
Overview

Theorem (C. 2013)

\[\mathbb{Z} \wr \mathbb{Z}^2 \] does not embed into Thompson’s Group V.
Overview

Theorem (C. 2013)

\[\mathbb{Z} \wr \mathbb{Z}^2 \] does not embed into Thompson’s Group V.

- Give some motivation.

Introduction
- coCF groups
- Wreath Products
- Thompson’s Group V
- Dynamics of V
- Proof of Main Result
Overview

Theorem (C. 2013)
\[\mathbb{Z} \wr \mathbb{Z}^2 \] does not embed into Thompson’s Group V.

- Give some motivation.
- Define wreath product.
A non-embedding result for Thompson’s Group V

Nathan Corwin

Introduction

coCF groups

Wreath Products

Thompson’s Group V

Dynamics of V

Proof of Main Result

Overview

Theorem (C. 2013)

\[\mathbb{Z} \wr \mathbb{Z}^2 \] does not embed into Thompson’s Group V.

- Give some motivation.
- Define wreath product.
- Define Thompson’s Group V.
Overview

A non-embedding result for Thompson’s Group V

Nathan Corwin

Introduction

CoCF groups

Wreath Products

Thompson’s Group V

Dynamics of V

Proof of Main Result

Theorem (C. 2013)

\[\mathbb{Z} \wr \mathbb{Z}^2 \text{ does not embed into Thompson’s Group V.} \]

- Give some motivation.
- Define wreath product.
- Define Thompson’s Group V.
- Briefly discuss dynamics in the group.
Overview

Theorem (C. 2013)

\[\mathbb{Z} \wr \mathbb{Z}^2 \] does not embed into Thompson’s Group V.

- Give some motivation.
- Define wreath product.
- Define Thompson’s Group V.
- Briefly discuss dynamics in the group.
- Briefly discuss the proof of the theorem.
In the mid-1980's Muller and Schupp showed that the class of all of groups that have a context free word problem (denoted CF) is equivalent to the class of groups that are virtually free.

A natural generalization of CF is the class coCF: all groups for which the coword problem is context free. This class was first introduced by Holt, Rees, Reiner, and Thomas in 2006. They showed that coCF has many closure properties.

Closed under:
- direct products;
- standard restricted wreath products where the top group is CF;
- passing to finitely generated subgroups;
- passing to finite index over-groups.
In the mid-1980’s Muller and Schupp showed that the class of all of groups that have a context free word problem (denoted \mathcal{CF}) is equivalent to the the class of groups that are virtually free.
In the mid-1980’s Muller and Schupp showed that the class of all of groups that have a context free word problem (denoted CF) is equivalent to the class of groups that are virtually free.

A natural generalization of CF is the class coCF: all groups for which the coword problem is context free.
In the mid-1980’s Muller and Schupp showed that the class of all of groups that have a context free word problem (denoted CF) is equivalent to the the class of groups that are virtually free.

A natural generalization of CF is the class coCF: all groups for which the coword problem is context free.

This class was first introduced by Holt, Rees, Röver, and Thomas in 2006.
In the mid-1980’s Muller and Schupp showed that the class of all of groups that have a context free word problem (denoted \mathcal{CF}) is equivalent to the the class of groups that are virtually free.

A natural generalization of \mathcal{CF} is the class $\co\mathcal{CF}$: all groups for which the coword problem is context free.

This class was first introduced by Holt, Rees, Röver, and Thomas in 2006.

They showed that $\co\mathcal{CF}$ has many closure properties. Closed under:

- direct products;
- standard restricted wreath products where the top group is \mathcal{CF};
- passing to finitely generated subgroups;
- passing to finite index over-groups.
Two conjectures from that paper:

1. If $C \wr T$ is in $\text{co}^1\mathcal{F}$, then T must be in \mathcal{F}; My theorem supports this conjecture.
2. $\text{co}^1\mathcal{F}$ is not closed under free products. The leading candidate to show the second conjecture is the group $\mathbb{Z} \ast \mathbb{Z}/2$.
Two conjectures from that paper:

1. If $C \wr T$ is in $\text{co} CF$, then T must be in CF;
Two conjectures from that paper:

1. If $C \wr T$ is in $\text{co}^C F$, then T must be in CF;
 - My theorem supports this conjecture.

2. $\text{co}^C F$ is not closed under free products.
 - The leading candidate to show the second conjecture is the group $\mathbb{Z} \ast \mathbb{Z}_2$.
Two conjectures from that paper:

1. If $C \wr T$ is in $\text{co} C F$, then T must be in $C F$;
 - My theorem supports this conjecture.

2. $\text{co} C F$ is not closed under free products.

The leading candidate to show the second conjecture is the group $\mathbb{Z} \rtimes \mathbb{Z}_2$.
Two conjectures from that paper:

1. If \(C \wr T \) is in \(\text{coC} \mathcal{F} \), then \(T \) must be in \(\mathcal{C} \mathcal{F} \);
 - My theorem supports this conjecture.

2. \(\text{coC} \mathcal{F} \) is not closed under free products.
 - The leading candidate to show the second conjecture is the group \(\mathbb{Z} \ast \mathbb{Z}^2 \).
In 2007 Lehnert and Schweitzer showed that R. Thompson’s group V is in $\text{co}C\mathcal{F}$.
In 2007 Lehnert and Schweitzer showed that R. Thompson’s group V is in $\text{co}CF$.

This was a surprising result.
In 2007 Lehnert and Schweitzer showed that R. Thompson’s group V is in $\text{co}C\mathcal{F}$.

This was a surprising result.

It also put into doubt the belief that $\mathbb{Z} \ast \mathbb{Z}^2$ is not in $\text{co}C\mathcal{F}$ as V contains many copies of \mathbb{Z} and \mathbb{Z}^2 and free products of subgroups are common in V.
In 2007 Lehnert and Schweitzer showed that R. Thompson’s group V is in $\text{co} \mathcal{F}$.

This was a surprising result.

It also put into doubt the belief that $\mathbb{Z} \ast \mathbb{Z}^2$ is not in $\text{co} \mathcal{F}$ as V contains many copies of \mathbb{Z} and \mathbb{Z}^2 and free products of subgroups are common in V.

In 2009, Bleak and Salazar-Díaz showed that $\mathbb{Z} \ast \mathbb{Z}^2$ does not embed into V.
In 2007 Lehnert and Schweitzer showed that R. Thompson’s group V is in $\text{co} \mathcal{CF}$.

This was a surprising result.

It also put into doubt the belief that $\mathbb{Z} \ast \mathbb{Z}^2$ is not in $\text{co} \mathcal{CF}$ as V contains many copies of \mathbb{Z} and \mathbb{Z}^2 and free products of subgroups are common in V.

In 2009, Bleak and Salazar-Díaz showed that $\mathbb{Z} \ast \mathbb{Z}^2$ does not embed into V.

In that paper, they conjectured that $\mathbb{Z} \wr \mathbb{Z}^2$ does not embed into V.
Richard Thompson discovered $F < T < V$ in 1965.
Richard Thompson discovered $F < T < V$ in 1965.

In 1999, Guba and Sapir showed that $\mathbb{Z} \wr \mathbb{Z}$ embeds into F, and thus embeds into T and V as well.
Other motivation
Structure of the R. Thompson’s groups

- In 1999, Guba and Sapir showed that $\mathbb{Z} \wr \mathbb{Z}$ embeds into F, and thus embeds into T and V as well.
- In 2008, Bleak showed that $\mathbb{Z} \wr \mathbb{Z}^2$ does not embed into F.
Other motivation
Structure of the R. Thompson’s groups

- Richard Thompson discovered \(F < T < V \) in 1965.
- In 1999, Guba and Sapir showed that \(\mathbb{Z} \wr \mathbb{Z} \) embeds into \(F \), and thus embeds into \(T \) and \(V \) as well.
- In 2008, Bleak showed that \(\mathbb{Z} \wr \mathbb{Z}^2 \) does not embed into \(F \).
- In 2009, Bleak, Kassabov, and Matucci showed \(\mathbb{Z} \wr \mathbb{Z}^2 \) does not embed into \(T \).
Some notation

Suppose that $a, b \in G$ and G acts on a set X.
Suppose that \(a, b \in G \) and \(G \) acts on a set \(X \).

- We will use right actions.
- We write \((x)a\) or just \(xa\) instead of \(a(x)\).
Some notation

Suppose that $a, b \in G$ and G acts on a set X.

- We will use right actions. We write $(x)a$ or just xa instead of $a(x)$.
- Conjugation: $a^b = b^{-1}ab$.
Suppose that $a, b \in G$ and G acts on a set X.

- We will use right actions.
 We write $(x)a$ or just xa instead of $a(x)$.
- Conjugation: $a^b = b^{-1}ab$.
- Commutator: $[a, b] = a^{-1}b^{-1}ab$.
Some notation

Suppose that $a, b \in G$ and G acts on a set X.

- We will use right actions. We write $(x)a$ or just xa instead of $a(x)$.
- Conjugation: $a^b = b^{-1}ab$.
- Commutator: $[a, b] = a^{-1}b^{-1}ab = a^{-1}a^b = (b^{-1})^a b$.
Suppose that $a, b \in G$ and G acts on a set X.

- We will use right actions. We write $(x)a$ or just xa instead of $a(x)$.
- Conjugation: $a^b = b^{-1}ab$.
- Commutator: $[a, b] = a^{-1}b^{-1}ab = a^{-1}a^b = (b^{-1})^ab$.
- Support of a function (element): $\text{Supp } (a) = \{ x \in X | xa \neq x \}$. Note, this differs slightly from the standard analysis definition.
Some notation

Suppose that $a, b \in G$ and G acts on a set X.

- We will use right actions. We write $(x)a$ or just xa instead of $a(x)$.
- Conjugation: $a^b = b^{-1}ab$.
- Commutator: $[a, b] = a^{-1}b^{-1}ab = a^{-1}a^b = (b^{-1})^ab$.
- Support of a function (element): $\text{Supp} \ (a) = \{x \in X | xa \neq x\}$.
 Note, this differs slightly from the standard analysis definition.
- Fact: $\text{Supp} \ (a^b) = \text{Supp} \ (a)b$.
Wreath Products

Let A and T be groups.
Wreath Products

Let A and T be groups.

Set $B = \oplus_{t \in T} A$.

Wreath Products

Let A and T be groups.

Set $B = \oplus_{t \in T} A$.

Then, the Wreath Product of A and T is $A \wr T = B \rtimes T$ (where the semi-direct product action of T on B is right multiplication on the index in the direct product).

We say T is the top group, A is the bottom group, and B is called the base group.
First look at R. Thompson’s group V

- V is finitely presented.
First look at R. Thompson’s group V

- V is finitely presented.
- Standard presentation has 4 generators,
A non-embedding result for Thompson’s Group V

Nathan Corwin

Introduction

coCF groups

Wreath Products

Thompson’s Group V

Dynamics of V

Proof of Main Result

First look at R. Thompson’s group V

- V is finitely presented.
- Standard presentation has 4 generators, and 13 relations.
First look at R. Thompson’s group V

- V is finitely presented.
- Standard presentation has 4 generators, and 13 relations.
- The generators of the standard presentation are A, B, C, π_0.
First look at R. Thompson’s group V

- V is finitely presented.
- Standard presentation has 4 generators, and 13 relations.
- The generators of the standard presentation are A, B, C, π_0.
- The relations:
First look at R. Thompson’s group V

- $[AB^{-1}, A^{-1}BA] = 1$;
- $[AB^{-1}, A^{-2}BA^2] = 1$;
- $C = BA^{-1}CB$;
- $A^{-1}CBA^{-1}BA = BA^{-2}CB^2$;
- $CA = (A^{-1}CB)^2$;
- $C^3 = 1$;
- $((A^{-1}CB)^{-1} \pi_0 A^{-1}CB)^2 = 1$;
- $[(A^{-1}CB)^{-1} \pi_0 A^{-1}CB, A^{-2}(A^{-1}CB)^{-1} \pi_0 A^{-1}CBA^2] = 1$;
- $(A^{-1}CB)^{-1} \pi_0 A^{-1}CBA(A^{-1}CB)^{-1} \pi_0 A^{-1}CB)^3 = 1$;
- $[A^{-2}BA^2, (A^{-1}CB)^{-1} \pi_0 A^{-1}CB] = 1$;
- $(A^{-1}CB)^{-1} \pi_0 A^{-1}CBA^{-1}BA = BA^{-1}(A^{-1}CB)^{-1} \pi_0 A^{-1}CBA(A^{-1}CB)^{-1} \pi_0 A^{-1}CB$;
- $A^{-1}(A^{-1}CB)^{-1} \pi_0 A^{-1}CBA = BA^{-2}(A^{-1}CB)^{-1} \pi_0 A^{-1}CBA^2$;
Second look at R. Thompson’s group V

Let \mathcal{T} be the infinite, rooted, directed, binary tree.
Let \mathcal{T} be the infinite, rooted, directed, binary tree.

Note that the limit space is the Cantor set.
An element of V

Let D and R be two finite connected rooted subgraphs of T (with the same root as T) both with n leaves for some arbitrary n. Let $\sigma \in S_n$. Then $u = (D,R,\sigma)$ is a representative of an element of V. (Tree pair representative)
Let D and R be two finite connected rooted subgraphs of T (with the same root as T) both with n leaves for some arbitrary n.
Let D and R be two finite connected rooted subgraphs of \mathcal{T} (with the same root as \mathcal{T}) both with n leaves for some arbitrary n. Let $\sigma \in S_n$.
Let D and R be two finite connected rooted subgraphs of T (with the same root as T) both with n leaves for some arbitrary n.

Let $\sigma \in S_n$.

Then $u = (D, R, \sigma)$ is a representative of an element of V. (Tree pair representative)
Example of an element U in V
Example of an element U in V
A non-embedding result for Thompson’s Group V

Nathan Corwin

Introduction

coC F groups

Wreath Products

Thompson’s Group V

Dynamics of V

Proof of Main Result

Example of an element U in V

$(0101100\ldots)U$
Example of an element U in V

$$(0101100 \ldots)U = 101100 \ldots$$
A non-embedding result for Thompson’s Group V

Nathan Corwin

Introduction

cocF groups

Wreath Products

Thompson’s Group V

Dynamics of V

Proof of Main Result

Not unique representation
A non-embedding result for Thompson's Group V

Nathan Corwin

Introduction

C^* groups

Wreath Products

Thompson's Group V

Dynamics of V

Proof of Main Result

Not unique representation
Not unique representation
A simplifying assumption for this talk

I will assume that every element of V (I discuss) has no non-trivial orbits when it acts on the Cantor set.
A simplifying assumption for this talk

- I will assume that every element of V (I discuss) has no non-trivial orbits when it acts on the Cantor set.

- This is not a big assumption (for me) as for any $v \in V$ there is an $n \in \mathbb{N}$ such that v^n has this condition.
A simplifying assumption for this talk

- I will assume that every element of V (I discuss) has no non-trivial orbits when it acts on the Cantor set.
- This is not a big assumption (for me) as for any $v \in V$ there is an $n \in \mathbb{N}$ such that v^n has this condition.
- This assumption is not needed to understand the dynamics of V, but makes things simpler to explain.
A non-embedding result for Thompson's Group V

Nathan Corwin

Introduction
cofC groups
Wreath Products
Thompson's Group V

Dynamics of V

Proof of Main Result

Revealing Pairs

Consider the common tree $C = D \cap R$.
Consider the common tree $C = D \cap R$.
Consider the common tree $C = D \cap R$.
Revealing Pairs and Important points

- A revealing pair is a particularly tree pair of an element of V.

Fact: $\text{Supp}(a) = \text{Supp}(a) \cup I(a)$.

Revealing Pairs and Important points

- A revealing pair is a particularly tree pair of an element of V.
- Each element of V has a revealing pair.
A revealing pair is a particularly tree pair of an element of V.

Each element of V has a revealing pair.

Each connected component of $D \setminus C$ has a unique fixed point. We will call it a *repelling fixed point*.
A revealing pair is a particularly tree pair of an element of V.

Each element of V has a revealing pair.

Each connected component of $D \setminus C$ has a unique fixed point. We will call it a *repelling fixed point*.

Each connected component of $R \setminus C$ has a unique fixed point. We will call it an *attracting fixed point*.
Revealing Pairs and Important points

- A revealing pair is a particularly tree pair of an element of V.
- Each element of V has a revealing pair.
- Each connected component of $D \setminus C$ has a unique fixed point. We will call it a repelling fixed point.
- Each connected component of $R \setminus C$ has a unique fixed point. We will call it an attracting fixed point.
- The set of the attracting and repelling fixed points are the set of important points for u. This set is denoted by $I(u)$.
Revealing Pairs and Important points

- A revealing pair is a particularly tree pair of an element of V.
- Each element of V has a revealing pair.
- Each connected component of $D \setminus C$ has a unique fixed point. We will call it a repelling fixed point.
- Each connected component of $R \setminus C$ has a unique fixed point. We will call it an attracting fixed point.
- The set of the attracting and repelling fixed points are the set of important points for u. This set is denoted by $I(u)$.

Fact: $\text{Supp} (a) = \text{Supp} (a) \cup I(a)$.
Flow graph

A non-embedding result for Thompson's Group V

Nathan Corwin

Introduction

Wreath Products

Thompson's Group V

Dynamics of V

Proof of Main Result
A non-embedding result for Thompson’s Group V

Nathan Corwin

Introduction

coCF groups

Wreath Products

Thompson’s Group V

Dynamics of V

Proof of Main Result
Flow graph

A non-embedding result for Thompson’s Group V

Nathan Corwin

Introductions

Wreath Products

Thompson’s Group V

Dynamics of V

Proof of Main Result
A non-embedding result for Thompson’s Group V

Nathan Corwin

Introduction

Wreath Products

Thompson’s Group V

Dynamics of V

Proof of Main Result

Flow graph
A non-embedding result for Thompson’s Group V

Nathan Corwin

Introduction
coCF groups
Wreath Products
Thompson’s Group V
Dynamics of V

Proof of Main Result

Flow graph

- Introduction
- coCF groups
- Wreath Products
- Thompson’s Group V
- Dynamics of V
- Proof of Main Result
Components of support
Lemma (Bleak, Salazar-Díaz, 2009)

Suppose $g, h \in V$, each with no non-trivial periodic orbits. For (i) and (ii), suppose further that g and h commute. Then:

i. $I(g) \cap I(h) = I(g) \cap \text{Supp}(h) = I(h) \cap \text{Supp}(g)$;

ii. If X and Y are components of support of g and h respectively, then $X = Y$ or $X \cap Y = \emptyset$;

iii. Suppose g and h have a common component of support X, and on X the actions of g and h commute. Then, there are non-trivial powers m and n such that $g^m = h^n$ over X.
Proof (outline) of main result

Recall

Theorem (C. 2013) \(\mathbb{Z} \wr \mathbb{Z}^2 \) does not embed into Thompson’s Group V.
Recall

Theorem (C. 2013)

$\mathbb{Z} \wr \mathbb{Z}^2$ does not embed into Thompson’s Group V.

Proof:

- **Step 1:** Suppose there is an injection $\phi : \mathbb{Z} \wr \mathbb{Z}^2 \to V$
Recall

Theorem (C. 2013)

\[\mathbb{Z} \wr \mathbb{Z}^2 \text{ does not embed into Thompson's Group } V.\]

Proof:

- **Step 1:** Suppose there is an injection \(\phi : \mathbb{Z} \wr \mathbb{Z}^2 \to V \)
- **Step 2:** Clean up injection
Let s' and t' be the images of the generators of the \mathbb{Z}^2.
Proof sketch continued

Step 2: Clean up injection

- Let s' and t' be the images of the generators of the \mathbb{Z}^2.
- Raise s' and t' to powers to obtain s and t with no non-trivial finite orbits.
Proof sketch continued
Step 2: Clean up injection

- Let s' and t' be the images of the generators of the \mathbb{Z}^2.
- Raise s' and t' to powers to obtain s and t with no non-trivial finite orbits.
- Fix an element γ_0' in the bottom group with no non-trivial finite orbits.
Proof sketch continued

Step 2: Clean up injection

- Let s' and t' be the images of the generators of the \mathbb{Z}^2.
- Raise s' and t' to powers to obtain s and t with no non-trivial finite orbits.
- Fix an element γ'_0 in the bottom group with no non-trivial finite orbits.
- Repeatedly apply two technical lemmas of Bleak and Salazar-Díaz to eventually replace γ'_0 with γ_0.
Proof sketch continued

Step 2: Clean up injection

- Let s' and t' be the images of the generators of the \mathbb{Z}^2.
- Raise s' and t' to powers to obtain s and t with no non-trivial finite orbits.
- Fix an element γ'_0 in the bottom group with no non-trivial finite orbits.
- Repeatedly apply two technical lemmas of Bleak and Salazar-Díaz to eventually replace γ'_0 with γ_0.
- γ_0 will:
 - be a non-trivial element of the base with no non-trivial finite orbits;
 - have support disjoint from a neighborhood of the important points of s and t.
Proof sketch continued

Step 2: Clean up injection

- Let s' and t' be the images of the generators of the \mathbb{Z}^2.
- Raise s' and t' to powers to obtain s and t with no non-trivial finite orbits.
- Fix an element γ'_0 in the bottom group with no non-trivial finite orbits.
- Repeatedly apply two technical lemmas of Bleak and Salazar-Díaz to eventually replace γ'_0 with γ_0.

γ_0 will:
- be a non-trivial element of the base with no non-trivial finite orbits;
- have support disjoint from a neighborhood of the important points of s and t.

We have $\langle s, t, \gamma_0 \rangle \cong \mathbb{Z} \wr \mathbb{Z}^2$.
Proof:

- **Step 1** Suppose there is an injection $\phi : \mathbb{Z} \wr \mathbb{Z}^2 \to V$
- **Step 2**: Clean up injection
Proof sketch continued

Proof:

- Step 1: Suppose there is an injection $\phi : \mathbb{Z} \wr \mathbb{Z}^2 \to V$
- Step 2: Clean up injection
- Step 3: Make sequence of γ_i's
Proof sketch continued

Step 3: Make sequence of γ_i’s

- Consider the subgroup $\langle s, r \rangle$. It has components of support X_1, \ldots, X_k.

On X_1, s and r commute, so there are integers $r, q \neq 0$ such that $u = sr^tq$ is trivial on X_1. Thus, there is a power p such that $\text{Supp}(u) \cap \text{Supp}(\gamma_0) \cap \text{Supp}(\gamma_0)^u = \emptyset$. Set $w = u^p$. Define $\gamma_1 = [\gamma_0, w]$. This element is nontrivial and of infinite order and will have no important points in X_1. One can show that $\langle s, t, \gamma_1 \rangle \sim \mathbb{Z} \rtimes \mathbb{Z}_2$.

Proof sketch continued

Step 3: Make sequence of γ_i's

- Consider the subgroup $\langle s, r \rangle$. It has components of support X_1, \ldots, X_k.

- On X_1, s and r commute, so there are integers $r, q \neq 0$ such that $u = s^r t^q$ is trivial on X_1.

Thus, there is a power p such that $\text{Supp}(u) \cap \text{Supp}(\gamma_0) \cap \text{Supp}(\gamma_0) u^p = \emptyset$. Set $w = u^p$.

Define $\gamma_1 = [\gamma_0, w]$. This element is nontrivial and of infinite order and will have no important points in X_1.

One can show that $\langle s, t, \gamma_1 \rangle \cong \mathbb{Z} \rtimes \mathbb{Z}_2$.
Proof sketch continued

Step 3: Make sequence of γ_i's

- Consider the subgroup $\langle s, r \rangle$. It has components of support X_1, \ldots, X_k.

- On X_1, s and r commute, so there are integers $r, q \neq 0$ such that $u = s^r t^q$ is trivial on X_1.

- Thus, there is a power p such that $\text{Supp}(u) \cap \text{Supp}(\gamma_0) \cap \text{Supp}(\gamma_0)u^p = \emptyset$. Set $w = u^p$.

Proof sketch continued
Step 3: Make sequence of γ_i's

- Consider the subgroup $\langle s, r \rangle$. It has components of support X_1, \ldots, X_k.
- On X_1, s and r commute, so there are integers $r, q \neq 0$ such that $u = s^r t^q$ is trivial on X_1.
- Thus, there is a power p such that $\text{Supp} (u) \cap \text{Supp} (\gamma_0) \cap \text{Supp} (\gamma_0 u^p) = \emptyset$. Set $w = u^p$.
- Define $\gamma_1 = [\gamma_0, w]$. This element is nontrivial and of infinite order and will have no important points in X_1.

One can show that $\langle s, t, \gamma_1 \rangle \cong \mathbb{Z} \rtimes \mathbb{Z}_2$.
Proof sketch continued

Step 3: Make sequence of γ_i's

- Consider the subgroup $\langle s, r \rangle$. It has components of support X_1, \ldots, X_k.
- On X_1, s and r commute, so there are integers $r, q \neq 0$ such that $u = s^r t^q$ is trivial on X_1.
- Thus, there is a power p such that $\text{Supp}(u) \cap \text{Supp}(\gamma_0) \cap \text{Supp}(\gamma_0 u^p) = \emptyset$. Set $w = u^p$.
- Define $\gamma_1 = [\gamma_0, w]$. This element is nontrivial and of infinite order and will have no important points in X_1.
- One can show that $\langle s, t, \gamma_1 \rangle \cong \mathbb{Z} \wr \mathbb{Z}^2$.
Proof sketch continued
Step 3: Make sequence of γ_i's

- Recursively repeat this process: given a γ_{i-1}, we can make a γ_i.

Each time, we have γ_i is nontrivial and of infinite order. Further, $\langle s, t, \gamma_i \rangle \sim \mathbb{Z} \rtimes \mathbb{Z}^2$. These elements were made so that γ_i has no important points in X_i. One can show that γ_i has no important points in X_j for $j < i$. In particular, γ_k has no important points at all, thus it is trivial.
Proof sketch continued
Step 3: Make sequence of γ_i’s

- Recursively repeat this process: given a γ_{i-1}, we can make a γ_i.
- Each time, we have γ_i is nontrivial and of infinite order.
 Further, $\langle s, t, \gamma_i \rangle \cong \mathbb{Z} \wr \mathbb{Z}^2$.

These elements were made so that γ_i has no important points in X_i. One can show that γ_i has no important points in X_j for $j < i$.
In particular, γ_k has no important points at all, thus it is trivial.
Proof sketch continued
Step 3: Make sequence of γ_i’s

- Recursively repeat this process: given a γ_{i-1}, we can make a γ_i.
- Each time, we have γ_i is nontrivial and of infinite order. Further, $\langle s, t, \gamma_i \rangle \cong \mathbb{Z} \wr \mathbb{Z}^2$.
- These elements were made so that γ_i has no important points in X_i.

One can show that γ_i has no important points in X_j for $j < i$. In particular, γ_k has no important points at all, thus it is trivial.
Proof sketch continued

Step 3: Make sequence of γ_i's

- Recursively repeat this process: given a γ_{i-1}, we can make a γ_i.
- Each time, we have γ_i is nontrivial and of infinite order. Further, $\langle s, t, \gamma_i \rangle \cong \mathbb{Z} \wr \mathbb{Z}^2$.
- These elements were made so that γ_i has no important points in X_i.
- One can show that γ_i has no important points in X_j for $j < i$.
Proof sketch continued
Step 3: Make sequence of γ_i’s

- Recursively repeat this process: given a γ_{i-1}, we can make a γ_i.
- Each time, we have γ_i is nontrivial and of infinite order. Further, $\langle s, t, \gamma_i \rangle \cong \mathbb{Z} \wr \mathbb{Z}^2$.
- These elements were made so that γ_i has no important points in X_i.
- One can show that γ_i has no important points in X_j for $j < i$.
- In particular, γ_k has no important points at all, thus it is trivial.
Finish proof sketch

Proof:

- Step 1: Suppose there is an injection $\phi : \mathbb{Z} \wr \mathbb{Z}^2 \to V$
- Step 2: Clean up injection
- Step 3: Make sequence of γ_i’s
- Step 4: Show that γ_k is a nontrivial element of infinite order that is also trivial
- Step 5: Notice that this is a contradiction
Finish proof sketch

Proof:

- Step 1: Suppose there is an injection $\phi : \mathbb{Z} \wr \mathbb{Z}^2 \rightarrow V$
- Step 2: Clean up injection
- Step 3: Make sequence of γ_i's
- Step 4: Show that γ_k is a nontrivial element of infinite order that is also trivial
- Step 5: Notice that is a contradiction
Proof:

- Step 1: Suppose there is an injection $\phi : \mathbb{Z} \times \mathbb{Z}^2 \rightarrow V$
- Step 2: Clean up injection
- Step 3: Make sequence of γ_i's
- Step 4: Show that γ_k is a nontrivial element of infinite order that is also trivial
- Step 5: Notice that is a contradiction
Thank you for your attention.