A generalisation on the solvability of finite groups with three class sizes for normal subgroups

Antonio Beltrán

Universidad Jaume I de Castellón (Spain)

Groups St. Andrews 2013, August 3-11

(in collaboration with María José Felipe)
Aim

We present the main results and techniques used for proving that a normal subgroup of a group G with three G-class sizes is solvable.
Aim

We present the main results and techniques used for proving that a normal subgroup of a group G with three G-class sizes is solvable.

NOTATION

Let G be a finite group

- If $x \in G$, then the set $x^G = \{x^g \mid g \in G\}$ is the conjugacy class of x in G and $|x^G|$ is called the class size of x.
Aim

We present the main results and techniques used for proving that a normal subgroup of a group G with three G-class sizes is solvable.

NOTATION

Let G be a finite group

• If $x \in G$, then the set $x^G = \{x^g / g \in G\}$ is the conjugacy class of x in G and $|x^G|$ is called the class size of x.

• We denote by $\text{cs}(G) = \{|x^G| : x \in G\}$.
Aim

We present the main results and techniques used for proving that a normal subgroup of a group G with three G-class sizes is solvable.

NOTATION

Let G be a finite group

- If $x \in G$, then the set $x^G = \{x^g : g \in G\}$ is the conjugacy class of x in G and $|x^G|$ is called the class size of x.

- We denote by $\text{cs}(G) = \{|x^G| : x \in G\}$.

- If $N \trianglelefteq G$, and $x \in N$, we consider the G-class of x, and define $\text{cs}_G(N) = \{|x^G| : x \in N\}$.
Aim
We present the main results and techniques used for proving that a normal subgroup of a group G with three G-class sizes is solvable.

NOTATION
Let G be a finite group

- If $x \in G$, then the set $x^G = \{x^g \mid g \in G\}$ is the conjugacy class of x in G and $|x^G|$ is called the class size of x.

- We denote by $cs(G) = \{|x^G| \mid x \in G\}$.

- If $N \trianglelefteq G$, and $x \in N$, we consider the G-class of x, and define $cs_G(N) = \{|x^G| \mid x \in N\}$.

New Topic
Influence of $cs_G(N)$ on the structure of N
If $N \trianglelefteq G$, in general the inequality $|cs_G(N)| \leq |cs(N)|$ does not hold.
If $N \trianglelefteq G$, in general the inequality $|cs_G(N)| \leq |cs(N)|$ does not hold.

Example

Let $G = S_3 \rtimes \mathbb{Z}_2$ and let $N = S_3 \times S_3 \trianglelefteq G$. Then

$$cs(N) = \{1, 2, 3, 4, 6, 9\}, \text{ while } cs_G(N) = \{1, 4, 6, 9, 12\}.$$
Problem: How is the structure of normal subgroups with two G-class sizes?
Problem: How is the structure of normal subgroups with two G-class sizes?

Theorem (Itô, 1953)

If $cs(G) = \{1, m\}$ then $m = p^a$ for some prime p and $G = P \times A$, with A abelian, and P a p-group.
Problem: How is the structure of normal subgroups with two G-class sizes?

Theorem (Itô, 1953)

If $\text{cs}(G) = \{1, m\}$ then $m = p^a$ for some prime p and $G = P \times A$, with A abelian, and P a p-group.

Theorem (Alemany, Beltrán, Felipe)

Suppose that N is a normal subgroup of a group G having two G-class sizes, then either N is abelian or $N = P \times A$, with P a p-group and $A \subseteq Z(G)$.

Problem: How is the structure of normal subgroups with three G-class sizes, that is, when $\text{cs}_G(N) = \{1, m, n\}$?
Problem: How is the structure of normal subgroups with three G-class sizes, that is, when $\text{cs}_G(N) = \{1, m, n\}$?

Theorem (Itô, 1970)
If a finite group G has three class sizes, then G is solvable.
Problem: How is the structure of normal subgroups with three G-class sizes, that is, when $\text{cs}_G(N) = \{1, m, n\}$?

Theorem (Ito, 1970)

If a finite group G has three class sizes, then G is solvable.

Definition. A nonabelian group G is said to be an F-group if for every $x, y \in G \setminus Z(G)$, such that $C_G(x) \subseteq C_G(y)$, then $C_G(x) = C_G(y)$.

A generalisation on the solvability of finite groups with three class sizes for normal subgroups
Problem: How is the structure of normal subgroups with three G-class sizes, that is, when $\text{cs}_G(N) = \{1, m, n\}$?

Theorem (Ito, 1970)
If a finite group G has three class sizes, then G is solvable.

Definition. A nonabelian group G is said to be an F-group if for every $x, y \in G \setminus \text{Z}(G)$, such that $C_G(x) \subseteq C_G(y)$, then $C_G(x) = C_G(y)$.

- F-groups were classified by J. Rebmann (1971). As a consequence, Rebmann obtains the solvability of groups with three class sizes which are F-groups.
Problem: How is the structure of normal subgroups with three G-class sizes, that is, when $\text{cs}_G(N) = \{1, m, n\}$?

Theorem (Itô, 1970)
If a finite group G has three class sizes, then G is solvable.

Definition. A nonabelian group G is said to be an F-group if for every $x, y \in G \setminus Z(G)$, such that $C_G(x) \subseteq C_G(y)$, then $C_G(x) = C_G(y)$.

- F-groups were classified by J. Rebmann (1971). As a consequence, Rebmann obtains the solvability of groups with three class sizes which are F-groups.
- A. Camina (1974) shows that any group with three class sizes which is not an F-group is a direct product of an abelian group and a group whose order involves no more than two primes.
Theorem (Dolfi, Jabara, 2009)

A finite group G has three class sizes if and only if, up to an abelian factor, either

1. G is a p-group for some prime p or
2. $G = KL$ with $K \leq G$, $(|K|, |L|) = 1$ and one of the following occurs
 a. both K and L are abelian, $Z(G) < L$ and G is a quasi-Frobenius group,
 b. K is abelian, L is a non-abelian p-group, for some prime p and $O_p(G)$ is an abelian subgroup of index p in L and $G/O_p(G)$ is a Frobenius group or
 c. K is a p-group with two class sizes for some prime p, L is abelian, $Z(K) = Z(G) \cap K$ and G is quasi-Frobenius.
Solvability of $N \trianglelefteq G$ with $\text{cs}_G(N) = \{1, m, n\}$

The case in which m does not divide n

Definition

A non-central normal subgroup N of a group G is said to be an F-normal subgroup if for every $x, y \in N \setminus Z(G)$, such that $C_G(x) \subseteq C_G(y)$, then $C_G(x) = C_G(y)$.

Lemma

If N is an F-normal subgroup of a group G, then $N/(N \cap Z(G))$ has a non-trivial normal abelian partition.

We use results of Baer and Suzuki on groups having a non-trivial normal partition to classify F-normal subgroups.
Solvability of $N \trianglelefteq G$ with $\text{cs}_G(N) = \{1, m, n\}$

The case in which m does not divide n
The case in which m does not divide n

Definition

A non-central normal subgroup N of a group G is said to be an F-normal subgroup if for every $x, y \in N \setminus Z(G)$, such that $C_G(x) \subseteq C_G(y)$, then $C_G(x) = C_G(y)$.

Lemma

If N is an F-normal subgroup of a group G, then $N/ (N \cap Z(G))$ has a non-trivial normal abelian partition.

We use results of Baer and Suzuki on groups having a non-trivial normal partition to classify F-normal subgroups.
Solvability of $N \trianglelefteq G$ with $cs_G(N) = \{1, m, n\}$

The case in which m does not divide n

Definition

A non-central normal subgroup N of a group G is said to be an **F-normal subgroup** if for every $x, y \in N \setminus Z(G)$, such that $C_G(x) \subseteq C_G(y)$, then $C_G(x) = C_G(y)$.

Lemma

If N is an F-normal subgroup of a group G, then $N/(N \cap Z(G))$ has a non-trivial normal abelian partition.
Solvability of \(N \trianglelefteq G \) with \(\text{cs}_G(N) = \{1, m, n\} \)

The case in which \(m \) does not divide \(n \)

Definition

A non-central normal subgroup \(N \) of a group \(G \) is said to be an **F-normal subgroup** if for every \(x, y \in N \setminus Z(G) \), such that \(C_G(x) \subseteq C_G(y) \), then \(C_G(x) = C_G(y) \).

Lemma

If \(N \) is an F-normal subgroup of a group \(G \), then \(N/(N \cap Z(G)) \) has a non-trivial normal abelian partition.

We use results of Baer and Suzuki on groups having a non-trivial normal partition to classify F-normal subgroups.
The case in which m does not divide n

Theorem (Akhlaghi, Beltrán, Felipe, Khatami)

Let G be a group and N be an F-normal subgroup of G. Then N satisfies one of the following conditions:

1. $N/Z(N)$ is a Frobenius group, with Frobenius kernel $L/Z(N)$ and complement $K/Z(N)$, with K and L abelian.

2. $N/Z(N)$ is a Frobenius group, with kernel $L/Z(N)$ and complement $K/Z(N)$, where K is abelian, and $L/Z(N)$ is of prime-power order, and L is an F-normal subgroup.

3. $N/Z(N) \cong S_4$ and V is non-abelian, for $V/Z(N)$, the Klein four-group of $N/Z(N)$. In particular, N is an F-group.

4. N has abelian Fitting subgroup of index p, p divides $|F(N)/Z(N)|$, and N is an F-group.

5. $N = P \times Z(N)_{p'}$, where $P \in Syl_p(N)$.

6. $N/Z(N) \cong \text{PSL}(2, p^h)$ or $\text{PGL}(2, p^h)$, where $p^h \geq 4$.
The case in which m does not divide n

Theorem (Akhlaghi, Beltrán, Felipe, Khatami)

Let N be an F-normal subgroup of G such that $|\text{cs}_G(N)| = 3$. Then N is solvable. In particular, when $\text{cs}_G(N) = \{1, m, n\}$ and m does not divide n, then N is solvable.
The case in which m does not divide n

Theorem (Akhlaghi, Beltrán, Felipe, Khatami)

Let N be an F-normal subgroup of G such that $|\text{cs}_G(N)| = 3$. Then N is solvable. In particular, when $\text{cs}_G(N) = \{1, m, n\}$ and m does not divide n, then N is solvable.

The proof consists in showing that case (6) in the above classification cannot happen.

Theorem (Akhlaghi, Beltrán, Felipe, Khatami)

Let N be a normal subgroup of a finite group G such that $\text{cs}_G(N) = \{1, m, n\}$, where $m < n$ and m does not divide n. Then one of the following conditions is satisfied:

(1) $N = P \times A$, where $P \in \text{Syl}_p(N)$, p prime and $A \subseteq \mathbb{Z}(G)$.

(2) $N/\mathbb{Z}(N)$ is a Frobenius group, with Frobenius kernel $L/\mathbb{Z}(N)$ and Frobenius complement $K/\mathbb{Z}(N)$, and

(a) either K and L are abelian, and

$$\text{cs}(N) = \{1, |L/\mathbb{Z}(N)|, |K/\mathbb{Z}(N)|\}.$$

(b) or K is abelian, and $L/\mathbb{Z}(N)$ is of prime-power order, and

$$\text{cs}(N) = \{1, |L/\mathbb{Z}(N)|, |K/\mathbb{Z}(N)||x^L| : x \in L \setminus \mathbb{Z}(N)\}.$$
The case in which m divides n

General outline of the proof.
The case in which m divides n

General outline of the proof.

a) Every element in N whose class size is m belongs to $F(N)$
The case in which m divides n

General outline of the proof.

a) Every element in N whose class size is m belongs to $F(N)$
 - If $z \in N$ is a p-element $|z^G| = m$, for some prime p, and if y is a p-regular element of $C_G(z)$, then

 $|y^{C_G(z)}|$
The case in which \(m \) divides \(n \)

General outline of the proof.

a) Every element in \(N \) whose class size is \(m \) belongs to \(F(N) \)
 - If \(z \in N \) is a \(p \)-element \(|z^G| = m \), for some prime \(p \), and if \(y \) is a \(p \)-regular element of \(C_G(z) \), then

\[
|y^{C_G(z)}| = |C_G(z) : C_G(z) \cap C_G(y)|
\]
The case in which m divides n

General outline of the proof.

a) Every element in N whose class size is m belongs to $\mathbf{F}(N)$

- If $z \in N$ is a p-element $|z^G| = m$, for some prime p, and if y is a p-regular element of $C_G(z)$, then

$$|y^{C_G(z)}| = |C_G(z) : C_G(z) \cap C_G(y)| = |C_G(z) : C_G(yz)| = 1, \frac{n}{m}.$$
The case in which m divides n

General outline of the proof.

a) Every element in N whose class size is m belongs to $\mathbf{F}(N)$
 - If $z \in N$ is a p-element $|z^G| = m$, for some prime p, and if
 y is a p-regular element of $C_G(z)$, then

 $$|y^{C_G(z)}| = |C_G(z) : C_G(z) \cap C_G(y)| = |C_G(z) : C_G(yz)| = 1, \frac{n}{m}.$$

 Thus, $C_N(z) \triangleleft C_G(z)$ and this normal subgroup has at most
 two p-regular $C_G(z)$-class sizes.
The case in which m divides n

General outline of the proof.

a) Every element in N whose class size is m belongs to $F(N)$

- If $z \in N$ is a p-element $|z^G| = m$, for some prime p, and if y is a p-regular element of $C_G(z)$, then

$$|y^{C_G(z)}| = |C_G(z) : C_G(z) \cap C_G(y)| = |C_G(z) : C_G(yz)| = 1, \frac{n}{m}.$$

Thus, $C_N(z) \trianglelefteq C_G(z)$ and this normal subgroup has at most two p-regular $C_G(z)$-class sizes.

Theorem (Akhlaghi, Beltrán, Felipe, J. Group Theory, 2013)

Let $N \triangleleft G$ having exactly two G-class sizes of p-regular elements. Then N is solvable. Moreover, either N has abelian p-complements or all p-regular elements of $N/(N \cap Z(G))$ have prime power order.
b) Properties of $F(N)$ and $Z(N)$.
The case in which m divides n

b) Properties of $F(N)$ and $Z(N)$.

Theorem

Suppose that N is a solvable normal subgroup of a group G and suppose that an integer m divides s for every $s \in \text{cs}_G(N)$, $s \neq 1$. If $g \in N$ and $|g^G| = m$, then $g \in F(N)$.
b) Properties of $F(N)$ and $Z(N)$.

Theorem

Suppose that N is a solvable normal subgroup of a group G and suppose that an integer m divides s for every $s \in cs_G(N)$, $s \neq 1$. If $g \in N$ and $|g^G| = m$, then $g \in F(N)$.

Theorem

Suppose that N is a nonsolvable normal subgroup of a group G and suppose that an integer m divides $|x^G|$ for every $x \in N \setminus Z(N)$. Then m divides $|Z(N)|$.
Lemma

A finite nonabelian simple group does not have a nontrivial conjugacy class whose size divides the order of its Schur multiplier.
The case in which m divides n

Lemma
A finite nonabelian simple group does not have a nontrivial conjugacy class whose size divides the order of its Schur multiplier.

Theorem
If N is a nonabelian normal subgroup of a finite group G and $|\text{cs}_G(N)| = 3$, then $Z(N)$ is properly contained in $F(N)$.
The case in which m divides n

Lemma
A finite nonabelian simple group does not have a nontrivial conjugacy class whose size divides the order of its Schur multiplier.

Theorem
If N is a nonabelian normal subgroup of a finite group G and $|c_{SG}(N)| = 3$, then $Z(N)$ is properly contained in $F(N)$.

c) Results on the structure of the normal section $N/F(N)$.
c) Results on the structure of the normal section $N/F(N)$. By (a), every element of class size m lies in $F(N)$, so we obtain that every element of $N \setminus F(N)$ has G-class size n.

Suppose $N \unlhd G$. What happens if every element in $G \setminus N$ has the same class size?

Theorem (Isaacs, 1970) Let N be a normal subgroup of a group G such that all of the conjugacy classes of G which lie outside N have equal sizes. Then G/N is cyclic or else every nonidentity element of G/N has prime order.
The case in which m divides n

c) Results on the structure of the normal section $N/F(N)$. By (a), every element of class size m lies in $F(N)$, so we obtain that every element of $N \setminus F(N)$ has G-class size n.

Suppose $N \trianglelefteq G$. What happens if every element in $G \setminus N$ has the same class size?
The case in which m divides n

c) Results on the structure of the normal section $N/F(N)$. By (a), every element of class size m lies in $F(N)$, so we obtain that every element of $N \setminus F(N)$ has G-class size n.

Suppose $N \trianglelefteq G$. What happens if every element in $G \setminus N$ has the same class size?

Theorem (Isaacs, 1970)

Let N be a normal subgroup of a group G such that all of the conjugacy classes of G which lie outside N have equal sizes. Then G/N is cyclic or else every nonidentity element of G/N has prime order.
The case in which m divides n

Definition

A normal section N/K of a group G satisfies condition (*) over G when N is a nonabelian normal subgroup of G such that all the G-conjugacy classes in N lying outside of K have equal size.

Theorem (Akhlaghi, Beltrán, Felipe)

Let N/K be a normal section satisfying (*) over G.

i) If $Z(N) \not\subseteq K$, then N/K is a p-group for some prime p and N/K is either abelian or has exponent p.

ii) If $Z(N) \subseteq K$, then either N/K is cyclic or is a CP-group. In the first case, N has abelian Hall P-complement, where $P = (N/K)$.

Antonio Beltrán

A generalisation on the solvability of finite groups with three classes...
Definition

A normal section N/K of a group G satisfies condition (*) over G when N is a nonabelian normal subgroup of G such that all the G-conjugacy classes in N lying outside of K have equal size.

Theorem (Akhlaghi, Beltrán, Felipe)

Let N/K be a normal section satisfying (*) over G.

i) If $Z(N) \not\subseteq K$, then N/K is a p-group for some prime p and N/K is either abelian or has exponent p.

ii) If $Z(N) \subseteq K$, then either N/K is cyclic or is a CP-group. In the first case, N has abelian Hall π-subgroups and normal π-complement, where $\pi = \pi(N/K)$.
d) CP-groups and final arguments.

\[N/F(N) \] is a non-solvable CP-group.

Theorem (Heineken, 2006)

If \(G \) is a finite non-solvable CP-group, then there exist normal subgroups \(B, C \) of \(G \) such that \(1 \subseteq B \subseteq C \subseteq G \) and \(B \) is a 2-group, \(C/B \) is non-abelian and simple, and \(G/C \) is a \(p \)-group for some prime \(p \) and cyclic or generalised quaternion. In particular, if \(G \) is a finite non-abelian simple CP-group, then \(G \) is isomorphic to:

- \(L_2(q) \), for \(q = 5, 7, 8, 9, 17 \)
- \(L_3(4) \)
- \(Sz(8) \) or \(Sz(32) \).

\(A \) generalisation on the solvability of finite groups with three class sizes for normal subgroups
The case in which m divides n

d) CP-groups and final arguments. We can assume that $N/F(N)$ is a non-solvable CP-group.
The case in which m divides n

\begin{itemize}
 \item[d)] CP-groups and final arguments. We can assume that $N/F(N)$ is a non-solvable CP-group.
\end{itemize}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{Theorem (Heineken, 2006)} & \\
\hline
If G is a finite non-solvable CP-group, then there exist normal subgroups B, C of G such that $1 \subseteq B \subseteq C \subseteq G$ and B is a 2-group, C/B is non-abelian and simple, and G/C is a p-group for some prime p and cyclic or generalised quaternion. In particular, if G is a finite non-abelian simple CP-group, then G is isomorphic to: $L_2(q)$, for $q = 5, 7, 8, 9, 17$, $L_3(4)$, $Sz(8)$ or $Sz(32)$.
\hline
\end{tabular}
\end{table}
The case in which m divides n

d) CP-groups and final arguments. We can assume that $N/F(N)$ is a non-solvable CP-group.

Theorem (Heineken, 2006)

If G is a finite non-solvable CP-group, then there exist normal subgroups B, C of G such that $1 \subseteq B \subseteq C \subseteq G$ and B is a 2-group, C/B is non-abelian and simple, and G/C is a p-group for some prime p and cyclic or generalised quaternion. In particular, if G is a finite non-abelian simple CP-group, then G is isomorphic to: $L_2(q)$, for $q = 5, 7, 8, 9, 17$, $L_3(4)$, $Sz(8)$ or $Sz(32)$.

- By induction on $|N|$ we have that N is perfect. If $N' < N$, then $|cs_G(N')| \leq 3$, so N' is solvable and N is solvable as well.
The case in which m divides n

d) CP-groups and final arguments. We can assume that $N/F(N)$ is a non-solvable CP-group.

Theorem (Heineken, 2006)

If G is a finite non-solvable CP-group, then there exist normal subgroups B, C of G such that $1 \subseteq B \subseteq C \subseteq G$ and B is a 2-group, C/B is non-abelian and simple, and G/C is a p-group for some prime p and cyclic or generalised quaternion. In particular, if G is a finite non-abelian simple CP-group, then G is isomorphic to: $L_2(q)$, for $q = 5, 7, 8, 9, 17$, $L_3(4)$, $Sz(8)$ or $Sz(32)$.

- By induction on $|N|$ we have that N is perfect. If $N' < N$, then $|cs_G(N')| \leq 3$, so N' is solvable and N is solvable as well.
- Therefore, there exists $B \trianglelefteq N$, such that N/B is simple (CP-group) and $B/F(N)$ is a 2-group.
The case in which \(m \) divides \(n \)

d) CP-groups and final arguments. We can assume that \(N/F(N) \) is a non-solvable CP-group.

Theorem (Heineken, 2006)

If \(G \) is a finite non-solvable CP-group, then there exist normal subgroups \(B, C \) of \(G \) such that \(1 \leq B \leq C \leq G \) and \(B \) is a 2-group, \(C/B \) is non-abelian and simple, and \(G/C \) is a \(p \)-group for some prime \(p \) and cyclic or generalised quaternion. In particular, if \(G \) is a finite non-abelian simple CP-group, then \(G \) is isomorphic to: \(L_2(q) \), for \(q = 5, 7, 8, 9, 17 \), \(L_3(4) \), \(Sz(8) \) or \(Sz(32) \).

- By induction on \(|N| \) we have that \(N \) is perfect. If \(N' < N \), then \(|cs_G(N')| \leq 3 \), so \(N' \) is solvable and \(N \) is solvable as well.
- Therefore, there exists \(B \trianglelefteq N \), such that \(N/B \) is simple (CP-group) and \(B/F(N) \) is a 2-group.
- We make a case-by-case analysis for each of the simple groups, and we finally get a contradiction.
A complete classification of the structure of normal subgroups N with $\text{cs}_G(N) = \{1, m, n\}$ when m divides n is still open.
A complete classification of the structure of normal subgroups N with $\text{cs}_G(N) = \{1, m, n\}$ when m divides n is still open.

Theorem (Dolfi, Jabara, 2009)

If $\text{cs}(G) = \{1, m, n\}$ with m dividing n, then either $G/Z(G)$ is a p-group for some prime p, or $F(G)$ is an abelian subgroup and $|G : F(G)| = p$.
A complete classification of the structure of normal subgroups N with $\text{cs}_G(N) = \{1, m, n\}$ when m divides n is still open.

Theorem (Dolfi, Jabara, 2009)

If $\text{cs}(G) = \{1, m, n\}$ with m dividing n, then either $G/Z(G)$ is a p-group for some prime p, or $\mathbf{F}(G)$ is an abelian subgroup and $|G : \mathbf{F}(G)| = p$.

When dealing with G-class sizes and normal subgroups, such structure does not hold.
Thank you for your attention