New progress on factorized groups and subgroup permutability

Paz Arroyo-Jordá

Instituto Universitario de Matemática Pura y Aplicada
Universidad Politécnica de Valencia, Spain

Groups St Andrews 2013 in St Andrews
St Andrews, 3rd-11th August 2013

in collaboration with M. Arroyo-Jordá, A. Martínez-Pastor and M.D. Pérez-Ramos
Factorized groups:

- All groups considered will be finite.

Factorized groups: A and B subgroups of a group G

$$G = AB$$

- How the structure of the factors A and B affects the structure of the whole group G?
- How the structure of the group G affects the structure of A and B?
Natural approach: **Classes of groups**

A class of groups is a collection \mathcal{F} of groups with the property that if $G \in \mathcal{F}$ and $G \cong H$, then $H \in \mathcal{F}$.
Factorized groups

Natural approach: Classes of groups

A class of groups is a collection \mathcal{F} of groups with the property that if $G \in \mathcal{F}$ and $G \cong H$, then $H \in \mathcal{F}$

Question

Let \mathcal{F} be a class of groups and $G = AB$ a factorized group:

- $A, B \in \mathcal{F} \implies G \in \mathcal{F}$?
- $G \in \mathcal{F} \implies A, B \in \mathcal{F}$?
Definitions

- A **formation** is a class \mathcal{F} of groups with the following properties:
 - Every homomorphic image of an \mathcal{F}-group is an \mathcal{F}-group.
 - If G/M and $G/N \in \mathcal{F}$, then $G/(M \cap N) \in \mathcal{F}$

- \mathcal{F} a formation: the \mathcal{F}-residual $G^\mathcal{F}$ of G is the smallest normal subgroup of G such that $G/G^\mathcal{F} \in \mathcal{F}$

- The formation \mathcal{F} is said to be saturated if $G/\Phi(G) \in \mathcal{F}$, then $G \in \mathcal{F}$.
Starting point

\[G = AB : \ A, B \in \mathcal{U}, \ A, B \trianglelefteq G \iff G \in \mathcal{U} \]

Example

\[Q = \langle x, y \rangle \cong Q_8, \quad V = \langle a, b \rangle \cong C_5 \times C_5 \]

\[G = [V]Q \text{ the semidirect product of } V \text{ with } Q \]

\[G = AB \text{ with } A = V \langle x \rangle \text{ and } B = V \langle y \rangle \]

\[A, B \in \mathcal{U}, \ A, B \trianglelefteq G, \ G \notin \mathcal{U} \]
Starting point

\[G = AB : \ A, B \in \mathcal{U}, \ A, B \trianglelefteq G \nRightarrow G \in \mathcal{U} \]

Example

\[Q = \langle x, y \rangle \cong Q_8, \quad V = \langle a, b \rangle \cong C_5 \times C_5 \]
\[G = [V]Q \text{ the semidirect product of } V \text{ with } Q \]
\[G = AB \text{ with } A = V\langle x \rangle \text{ and } B = V\langle y \rangle \]
\[A, B \in \mathcal{U}, \ A, B \trianglelefteq G, \ G \notin \mathcal{U} \]

\[G = AB : \ A, B \in \mathcal{U}, \ A, B \trianglelefteq G + \text{additional conditions} \implies G \in \mathcal{U} \]

- (Baer, 57) \(G' \in \mathcal{N} \)
- (Friesen, 71) \((|G : A|, |G : B|) = 1 \)
Permutability properties

If $G = AB$ is a central product of the subgroups A and B, then:

$$A, B \in \mathcal{U} \implies G \in \mathcal{U}$$

More generally, if \mathcal{F} is any formation:

$$A, B \in \mathcal{F} \implies G \in \mathcal{F}$$

(In particular, this holds when $G = A \times B$ is a direct product.)
Permutability properties

If $G = AB$ is a central product of the subgroups A and B, then:

$$A, B \in \mathcal{U} \implies G \in \mathcal{U}$$

More generally, if \mathcal{F} is any formation:

$$A, B \in \mathcal{F} \implies G \in \mathcal{F}$$

(In particular, this holds when $G = A \times B$ is a direct product.)

Let $G = AB$ a factorized group:

$$A, B \in \mathcal{U} \ (\text{or } \mathcal{F}) \quad \text{permutability properties} \quad \implies G \in \mathcal{U} \ (\text{or } \mathcal{F})$$
Permutability properties

Total permutability

Definition

Let G be a group and let A and B be subgroups of G. It is said that A and B are totally permutable if every subgroup of A permutes with every subgroup of B.

Theorem

(Asaad, Shaalan, 89) If $G = AB$ is the product of the totally permutable subgroups A and B, then

$$A, B \in \mathcal{U} \implies G \in \mathcal{U}$$
Total permutability and formations

(Maier,92; Carocca,96; Ballester-Bolinches, Pedraza-Aguilera, Pérez-Ramos, 96-98) Let \mathcal{F} be a formation such that $\mathcal{U} \subseteq \mathcal{F}$. Let the group $G = G_1 G_2 \cdots G_r$ be a product of pairwise totally permutable subgroups $G_1, G_2, \ldots, G_r, r \geq 2$. Then:

Theorem

- If $G_i \in \mathcal{F}$ $\forall i \in \{1, \ldots, r\}$, then $G \in \mathcal{F}$.
- Assume in addition that \mathcal{F} is either saturated or $\mathcal{F} \subseteq S$. If $G \in \mathcal{F}$, then $G_i \in \mathcal{F}, \forall i \in \{1, \ldots, r\}$.

Corollary

- If \mathcal{F} is either saturated or $\mathcal{F} \subseteq S$, then: $G^{\mathcal{F}} = G_1^{\mathcal{F}} G_2^{\mathcal{F}} \cdots G_r^{\mathcal{F}}$.
Conditional permutability

Definitions

(Qian, Zhu, 98) (Guo, Shum, Skiba, 05) Let G be a group and let A and B be subgroups of G.

- A and B are **conditionally permutable** in G (c-permutable), if $AB^g = B^gA$ for some $g \in G$.
- A and B are **totally c-permutable** if every subgroup of A is c-permutable in G with every subgroup of B.

Example

Let X and Y be two 2-Sylow subgroups of S_3. Then X permutes with Y^g for some $g \in S_3$, but X does not permute with Y.
Total c-permutability and supersolubility

Theorem

(Arroyo-Jordá, AJ, Martínez-Pastor, Pérez-Ramos, 10) Let $G = AB$ be the product of the totally c-permutable subgroups A and B. Then:

$$G^U = A^U B^U$$
Total c-permutability and supersolubility

Theorem

(Arroyo-Jordá, AJ, Martínez-Pastor, Pérez-Ramos, 10) Let $G = AB$ be the product of the totally c-permutable subgroups A and B. Then:

$$G^\mathcal{U} = A^\mathcal{U} B^\mathcal{U}$$

In particular, $A, B \in \mathcal{U} \iff G \in \mathcal{U}$
Total c-permutability and supersolubility

Theorem

(Arroyo-Jordá, AJ, Martínez-Pastor, Pérez-Ramos, 10) Let $G = AB$ be the product of the totally c-permutable subgroups A and B. Then:

$$G^\mathcal{U} = A^\mathcal{U} B^\mathcal{U}$$

In particular, $A, B \in \mathcal{U} \iff G \in \mathcal{U}$

Corollary

(AJ, AJ, MP, PR, 10) Let $G = AB$ be the product of the totally c-permutable subgroups A and B and let p be a prime. If A, B are p-supersoluble, then G is p-supersoluble.
Question

Are saturated formations F (of soluble groups) containing U closed under taking products of totally c-permutable subgroups?

Example

Take $G = S_4 = AB$, $A = A_4$ and $B \cong C_2$ generated by a transposition. Then A and B are totally c-permutable in G.

Let $F = N^2$, the saturated formation of metanilpotent groups. Notice $U \subseteq N^2 \subseteq S$. Then:

$$A, B \in F \text{ but } G \notin F.$$

In particular, $G^F \neq A^F B^F$.
Conditional permutability

Remark

c-permutability fails to satisfy the property of persistence in intermediate subgroups.

Example

Let $G = S_4$ and let $Y \cong C_2$ generated by a transposition.

Let V be the normal subgroup of G of order 4 and X a subgroup of V of order 2, $X \neq Z(VY)$. Then

- X and Y are c-permutable in G
- X and Y are not c-permutable in $\langle X, Y \rangle$.
Complete c-permutability

Definitions

(Guo, Shum, Skiba, 05) Let G be a group and let A and B be subgroups of G.

- A and B are **completely c-permutable** in G (cc-permutable), if $AB^g = B^gA$ for some $g \in \langle A, B \rangle$.

- A and B are **totally completely c-permutable** (tcc-permutable) if every subgroup of A is completely c-permutable in G with every subgroup of B.

| Totally permutable | \implies | Totally completely c-permutable | \implies | Totally c-permutable | \nRightarrow |
Complete c-permutability and supersolubility

\[G = AB, \ A, B \text{ totally c-permutable}, \ G^U = A^U B^U \]

Corollary

(Guo, Shum, Skiba, 06)

- Let \(G = AB \) be a product of the tcc-permutable subgroups \(A \) and \(B \). If \(A, B \in \mathcal{U} \), then \(G \in \mathcal{U} \).
Complete c-permutability and supersolubility

\[G = AB, \ A, B \text{ totally c-permutable, } G^\mathcal{U} = A^\mathcal{U} B^\mathcal{U} \]

Corollary

(Guo, Shum, Skiba, 06)

- Let \(G = AB \) be a product of the tcc-permutable subgroups \(A \) and \(B \). If \(A, B \in \mathcal{U} \), then \(G \in \mathcal{U} \).

- Let \(G = AB \) be the product of the tcc-permutable subgroups \(A \) and \(B \) and let \(p \) be a prime. If \(A, B \) are \(p \)-supersoluble, then \(G \) is \(p \)-supersoluble.
Question

Are saturated formations \mathcal{F} (of soluble groups) containing \mathcal{U} closed under taking products of totally completely c-permutable subgroups?

Theorem

Let \mathcal{F} be a saturated formation such that $\mathcal{U} \subseteq \mathcal{F} \subseteq S$.

Let the group $G = G_1 \cdots G_r$ be the product of pairwise permutable subgroups G_1, \ldots, G_r, for $r \geq 2$. Assume that G_i and G_j are tcc-permutable subgroups for all $i, j \in \{1, \ldots, r\}$, $i \neq j$. Then:

- If $G_i \in \mathcal{F}$ for all $i = 1, \ldots, r$, then $G \in \mathcal{F}$.
- If $G \in \mathcal{F}$, then $G_i \in \mathcal{F}$ for all $i = 1, \ldots, r$.
Total complete c-permutability and saturated formations

Corollary

Let F be a saturated formation such that $U \subseteq F \subseteq S$. Let the group $G = G_1 \cdots G_r$ be the product of pairwise permutable subgroups G_1, \ldots, G_r, for $r \geq 2$. Assume that G_i and G_j are tcc-permutable subgroups for all $i, j \in \{1, \ldots, r\}$, $i \neq j$. Then:

- $G_i^F \leq G$ for all $i = 1, \ldots, r$.
- $G^F = G_1^F \cdots G_r^F$.
Total complete c-permutability and saturated formations

Question

Is it possible to extend the above results on products of tcc-permutable subgroups to either non-saturated formations or saturated formations of non-soluble groups \mathcal{F} such that $\mathcal{U} \subseteq \mathcal{F}$?
Total complete c-permutability and saturated formations

Question

Is it possible to extend the above results on products of tcc-permutable subgroups to either non-saturated formations or saturated formations of non-soluble groups F such that $U \subseteq F$?

- We need a better knowledge of structural properties of products of tcc-permutable groups.
Lemma

(AJ, AJ, PR, 11) If $1 \neq G = AB$ is the product of tcc-permutable subgroups A and B, then there exists $1 \neq N \trianglelefteq G$ such that either $N \leq A$ or $N \leq B$.

Corollary

(AJ, AJ, PR, 11) Let the group $1 \neq G = G_1 \cdots G_r$ be the product of pairwise permutable subgroups G_1, \ldots, G_r, for $r \geq 2$. Assume that G_i and G_j are tcc-permutable subgroups for all $i, j \in \{1, \ldots, r\}$, $i \neq j$.

Then there exists $1 \neq N \trianglelefteq G$ such that $N \leq G_i$ for some $i \in \{1, \ldots, r\}$.
Subnormal subgroups

Proposition

(AJ,AJ,MP,PR,13) Let the group $G = AB$ be the product of tcc-permutable subgroups A and B. Then

$$A' 	rianglelefteq 	rianglelefteq G \quad \text{and} \quad B' 	rianglelefteq 	rianglelefteq G.$$

Corollary

(AJ,AJ,MP,PR,13) Let the group $G = G_1 \cdots G_r$ be the product of pairwise permutable subgroups G_1, \ldots, G_r, for $r \geq 2$. Assume that G_i and G_j are tcc-permutable subgroups for all $i, j \in \{1, \ldots, r\}$, $i \neq j$. Then:

$$G'_i \trianglelefteq \trianglelefteq G, \quad \text{for all } i \in \{1, \ldots, r\}.$$
Subnormal subgroups

Proposition

(Maier, 92) If \(G = AB \) is the product of totally permutable subgroups \(A \) and \(B \), then \(A \cap B \leq F(G) \), that is, \(A \cap B \) is a subnormal nilpotent subgroup of \(G \).

Example

The above property is not true for products of tcc-permutable subgroups.

- Let \(G = S_3 = AB \) with the trivial factorization \(A = S_3 \) and \(B \) a 2-Sylow subgroup of \(G \). This is a product of tcc-permutable subgroups, but: \(A \cap B = B \) is not a subnormal subgroup of \(G \).

- Let \(G = S_3 = AB \) with the trivial factorization \(A = B = S_3 \). This is a product of tcc-permutable subgroups, but: \(A \cap B = S_3 \notin \mathcal{N} \).
Nilpotent residuals

Theorem

(Beidleman, Heineken, 99) Let \(G = AB \) be a product of the totally permutable subgroups \(A \) and \(B \). Then:

\[
[A^N, B] = 1 \quad \text{and} \quad [B^N, A] = 1.
\]

Example

Let \(V = \langle a, b \rangle \cong C_5 \times C_5 \) and \(C_6 \cong C = \langle \alpha, \beta \rangle \leq \text{Aut}(V) \) given by:

\[
a^\alpha = a^{-1}, \quad b^\alpha = b^{-1}; \quad a^\beta = b, \quad b^\beta = a^{-1}b^{-1}
\]

Let \(G = [V]C \) be the corresponding semidirect product. Then \(G = AB \) is the product of the tcc-permutable subgroups \(A = \langle \alpha \rangle \) and \(B = V\langle \beta \rangle \). Notice that \(A \in \mathcal{U} \), but

\[
B^N = B^\mathcal{U} = V \quad \text{does not centralize} \ A.
\]
Nilpotent residuals

Theorem

(AJ,AJ,MP,PR,13) Let the group $G = AB$ be the product of tcc-permutable subgroups A and B. Then

$$A^N \trianglelefteq G \text{ and } B^N \trianglelefteq G.$$

Corollary

(AJ,AJ,MP,PR,13) Let the group $G = G_1 \cdots G_r$ be the product of pairwise permutable subgroups G_1, \ldots, G_r, for $r \geq 2$. Assume that G_i and G_j are tcc-permutable subgroups for all $i, j \in \{1, \ldots, r\}$, $i \neq j$. Then

$$G_i^N \trianglelefteq G, \text{ for all } i \in \{1, \ldots, r\}.$$
\[U\)-hypercentre

Theorem

(Hauck, PR, MP, 03), (Gállego, Hauck, PR, 08) *Let* \(G = AB \) *be a product of the totally permutable subgroups* \(A \) *and* \(B \). *Then:*

\[[A, B] \leq Z_U(G) \]

or, equivalently, \(G/Z_U(G) = AZ_U(G)/Z_U(G) \times BZ_U(G)/Z_U(G) \).

Example

Let \(G = [V]C = AB \) *the product of the tcc-permutable subgroups* \(A = \langle \alpha \rangle \) *and* \(B = V\langle \beta \rangle \) *under the action* \(a^\alpha = a^{-1}, b^\alpha = b^{-1}; a^\beta = b, b^\beta = a^{-1}b^{-1} \). *Notice that:*

\[Z_U(G) = 1 \) *and* \(G \) *is not a direct product of* \(A \) *and* \(B \).
Main theorem

Theorem

(AJ,AJ,MP,PR, 13)

Let the group $G = AB$ be the product of tcc-permutable subgroups A and B. Then:

$$[A, B] \leq F(G).$$

For the proof we have used the CFSG.
Consequences of the main theorem

Corollary

(AJ,AJ,MP,PR, 13) Let the group $G = G_1 \cdots G_r$ be the product of pairwise permutable subgroups G_1, \ldots, G_r, for $r \geq 2$, and $G_i \neq 1$ for all $i = 1, \ldots, r$. Assume that G_i and G_j are tcc-permutable subgroups for all $i, j \in \{1, \ldots, r\}$, $i \neq j$. Let N be a minimal normal subgroup of G. Then:

1. If N is non-abelian, then there exists a unique $i \in \{1, \ldots, r\}$ such that $N \leq G_i$. Moreover, G_j centralizes N and $N \cap G_j = 1$, for all $j \in \{1, \ldots, r\}$, $j \neq i$.

Consequences of the main theorem

Corollary

(AJ,AJ,MP,PR, 13) Let the group $G = G_1 \cdots G_r$ be the product of pairwise permutable subgroups G_1, \ldots, G_r, for $r \geq 2$, and $G_i \neq 1$ for all $i = 1, \ldots, r$. Assume that G_i and G_j are tcc-permutable subgroups for all $i, j \in \{1, \ldots, r\}$, $i \neq j$. Let N be a minimal normal subgroup of G. Then:

1. If N is non-abelian, then there exists a unique $i \in \{1, \ldots, r\}$ such that $N \leq G_i$. Moreover, G_j centralizes N and $N \cap G_j = 1$, for all $j \in \{1, \ldots, r\}$, $j \neq i$.

2. If G is a monolithic primitive group, then the unique minimal normal subgroup N is abelian.
Consequences of the main theorem

Corollary

(AJ,AJ,MP,PR, 13) Let the group $G = AB$ be the tcc-permutable product of the subgroups A and B. Then:

- If A is a normal subgroup of G, then B acts u-hypercentrally on A by conjugation. In particular, B^U centralizes A.
Total complete c-permutability and formations

Theorem

(AJ, AJ, MP, PR, 13) Let \mathcal{F} be a **saturated** formation such that $\mathcal{U} \subseteq \mathcal{F}$. Let the group $G = G_1 \cdots G_r$ be the product of pairwise permutable subgroups G_1, \ldots, G_r, for $r \geq 2$. Assume that G_i and G_j are tcc-permutable subgroups for all $i, j \in \{1, \ldots, r\}$, $i \neq j$. Then:

- If $G_i \in \mathcal{F}$ for all $i = 1, \ldots, r$, then $G \in \mathcal{F}$.
- If $G \in \mathcal{F}$, then $G_i \in \mathcal{F}$ for all $i = 1, \ldots, r$.
Theorem

(AJ, AJ, MP, PR, 13) Let \mathcal{F} be a saturated formation such that $\mathcal{U} \subseteq \mathcal{F}$. Let the group $G = G_1 \cdots G_r$ be the product of pairwise permutable subgroups G_1, \ldots, G_r, for $r \geq 2$. Assume that G_i and G_j are tcc-permutable subgroups for all $i, j \in \{1, \ldots, r\}$, $i \neq j$. Then:

- If $G_i \in \mathcal{F}$ for all $i = 1, \ldots, r$, then $G \in \mathcal{F}$.
- If $G \in \mathcal{F}$, then $G_i \in \mathcal{F}$ for all $i = 1, \ldots, r$.

Corollary

Under the same hypotheses:

- $G_i^\mathcal{F} \trianglelefteq G$ for all $i = 1, \ldots, r$.
- $G^\mathcal{F} = G_1^\mathcal{F} \cdots G_r^\mathcal{F}$.
Necessity of saturation

Example

Define the mapping $f : \mathbb{P} \longrightarrow \{ \text{classes of groups} \}$ by setting

$$f(p) = \begin{cases} (1, C_2, C_3, C_4) & \text{if } p = 5 \\ (G \in A : \exp(G) | p - 1) & \text{if } p \neq 5 \end{cases}$$

Let $\mathcal{F} = \{ G \in S \mid H/K \text{ chief factor of } G \Rightarrow \text{Aut}_G(H/K) \in f(p) \ \forall p \in \sigma(H/K) \}$. \mathcal{F} is a formation of soluble groups such that $\mathcal{U} \subseteq \mathcal{F}$.

Let again $G = [V]C = AB$ be the product of the tcc-permutable subgroups $A = \langle \alpha \rangle$ and $B = V\langle \beta \rangle$ (under the action $a^\alpha = a^{-1}$, $b^\alpha = b^{-1}$; $a^\beta = b$, $b^\beta = a^{-1}b^{-1}$). Then:

- $A, B \in \mathcal{F}$, but $G \not\in \mathcal{F}$, since $G/C_G(V) \cong C_3 \times C_2 \not\in f(5)$.
Necessity of saturation

Example

Define the mapping \(f : \mathbb{P} \rightarrow \{ \text{classes of groups} \} \) by setting

\[
f(p) = \begin{cases}
(1, C_2, C_3, C_4) & \text{if } p = 5 \\
(G \in A : \exp(G) \mid p - 1) & \text{if } p \neq 5
\end{cases}
\]

Let \(\mathcal{F} = (G \in S \mid H/K \text{ chief factor of } G \Rightarrow \text{Aut}_G(H/K) \in f(p) \ \forall p \in \sigma(H/K)) \).

\(\mathcal{F} \) is a formation of soluble groups such that \(\mathcal{U} \subseteq \mathcal{F} \).

Let again \(G = [V]C = AB \) be the product of the tcc-permutable subgroups \(A = \langle \alpha \rangle \) and \(B = V \langle \beta \rangle \) (under the action \(a^\alpha = a^{-1}, b^\alpha = b^{-1}; a^\beta = b, b^\beta = a^{-1}b^{-1} \)). Then:

- \(A, B \in \mathcal{F} \), but \(G \not\in \mathcal{F} \), since \(G/C_G(V) \cong C_3 \times C_2 \not\in f(5) \).

Modifying the construction of the formation \(\mathcal{F} \) by setting \(f(5) = (1, C_2, C_4, C_6) \):

- \(G, A \in \mathcal{F} \), but \(B \not\in \mathcal{F} \), since \(B/C_B(V) \cong C_3 \not\in f(5) \).
References

THANK YOU FOR YOUR ATTENTION!