Towards effective computation

Eamonn O’Brien

University of Auckland

August 2009
Geometry following Aschbacher: general strategy

\[G = \langle X \rangle \leq \text{GL}(d, q). \]

1. Determine (at least one of) its Aschbacher categories.
2. If \(N \triangleleft G \) exists, process \(N \) and \(G/N \) recursively.
3. Otherwise \(G \) is either classical group in natural representation or \(T \leq G/Z \leq \text{Aut}(T) \) where \(T \) is simple.
$G = \langle X \rangle \leq \text{GL}(d, q)$.

1. Determine (at least one of) its Aschbacher categories.
2. If $N \triangleleft G$ exists, process N and G/N recursively.
3. Otherwise G is either classical group in natural representation or $T \leq G/Z \leq \text{Aut}(T)$ where T is simple.
 - “Reduce” from G to quasisimple group L.

Towards effective computation
Geometry following Aschbacher: general strategy

\[G = \langle X \rangle \leq \text{GL}(d, q). \]

1. Determine (at least one of) its Aschbacher categories.
2. If \(N \triangleleft G \) exists, process \(N \) and \(G/N \) recursively.
3. Otherwise \(G \) is either classical group in natural representation or \(T \leq G/Z \leq \text{Aut}(T) \) where \(T \) is simple.

- “Reduce” from \(G \) to quasisimple group \(L \).
- Name \(L \).
Geometry following Aschbacher: general strategy

\[G = \langle X \rangle \leq \text{GL}(d, q). \]

1. Determine (at least one of) its Aschbacher categories.
2. If \(N \triangleleft G \) exists, process \(N \) and \(G/N \) recursively.
3. Otherwise \(G \) is either classical group in natural representation or \(T \leq G/Z \leq \text{Aut}(T) \) where \(T \) is simple.
 - “Reduce” from \(G \) to quasisimple group \(L \).
 - Name \(L \).
 - Set up “effective” isomorphisms between \(L \) and its standard copy \(S \).
The composition tree for G

Bäärnhielm, Leedham-Green & O'B
Neunhöffer & Seress
The composition tree for G

Bäärnhielm, Leedham-Green & O’B
Neunhöffer & Seress

H

$K \overleftarrow{I}$

- Node: section H of G.

Towards effective computation
The composition tree for G

Bäärnhielm, Leedham-Green & O’B
Neunhöffer & Seress

H

$K \overset{I}{\longrightarrow}$

- Node: section H of G.
- Image I: image under homomorphism or isomorphism. Images correspond to Aschbacher category, but also others e.g determinant map.
The composition tree for G

Bäärnhielm, Leedham-Green & O’B
Neunhöffer & Seress

H

$K \overset{I}{\longrightarrow}$

- Node: section H of G.
- Image I: image under homomorphism or isomorphism. Images correspond to Aschbacher category, but also others e.g determinant map.
- Kernel K.
The composition tree for G

Bäärnhielm, Leedham-Green & O’B
Neunhöffer & Seress

H

$K \overset{I}{\longrightarrow}$

- Node: section H of G.

- Image I: image under homomorphism or isomorphism. Images correspond to Aschbacher category, but also others e.g determinant map.

- Kernel K.

- Leaf is “composition factor” of G: simple modulo scalars. Cyclic not necessarily of prime order.
Tree is constructed in right depth-first order.
Tree is constructed in right depth-first order.

If node H is not a leaf, construct recursively subtree rooted at I, then subtree rooted at K.
Tree is constructed in **right depth-first order**.

If node H is not a leaf, construct recursively subtree rooted at I, then subtree rooted at K.

$$
\begin{array}{c}
H \\
\mid \\
I_1 \\
\end{array}
$$
Tree is constructed in right depth-first order.

If node H is not a leaf, construct recursively subtree rooted at I, then subtree rooted at K.

```
   H     H
  /     /  \
I1    I1  /  \
 /    |   |
I2    I2
```
Tree is constructed in right depth-first order.

If node H is not a leaf, construct recursively subtree rooted at I, then subtree rooted at K.

```
        H
       /|
      / |\n     I1 I1 I1
    / |   \|
   I2 K2 I2
```
Tree is constructed in **right depth-first order**.

If node H is not a leaf, construct recursively subtree rooted at I, then subtree rooted at K.

```
        H  
       /   
      /    
     H    H
    /     /   
   /     /    
  I1    I1    I1
    |      |     |  
   I2    K2    K1
     |      |      |  
    I2    I2    I1
```
Assume $\phi : H \longrightarrow I$ where $K = \ker \phi$.

SOMETIME EASY TO OBTAIN THEORETICAL GENERATING SETS FOR $\ker \phi$.

E.G. SMALLER FIELD, SEMILINEAR, NORMALISER OF SYMPLECTIC-TYPE GROUP.

OTHERWISE, CONSTRUCT NORMAL GENERATING SET FOR K, BY EVALUATING RELATORS IN PRESENTATION FOR I AND TAKE NORMAL CLOSURE.

SO WE NEED A PRESENTATION FOR I.

TO OBTAIN PRESENTATION FOR NODE: NEED ONLY PRESENTATION FOR ASSOCIATED KERNEL AND IMAGE.

SO INDUCTIVELY NEED TO KNOW PRESENTATIONS ONLY FOR THE LEAVES – OR COMPOSITION FACTORS.
Assume $\phi : H \rightarrow I$ where $K = \ker \phi$.

$\begin{tikzpicture}
 \node (H) at (0,0) {H};
 \node (K) at (-1,-1) {K};
 \node (I) at (1,-1) {I};
 \draw (H) -- (K); \draw (K) -- (I);
\end{tikzpicture}$

Sometime easy to obtain theoretically generating sets for $\ker \phi$.
E.g. Smaller Field, Semilinear, normaliser of symplectic-type group.

Otherwise, construct normal generating set for K, by evaluating relators in presentation for I and take normal closure.

So we need a presentation for I.

To obtain presentation for node: need only presentation for associated kernel and image.

So inductively need to know presentations only for the leaves – or composition factors.
Assume $\phi : H \rightarrowtail I$ where $K = \ker \phi$.

Sometime easy to obtain theoretically generating sets for $\ker \phi$.

E.g. Smaller Field, Semilinear, normaliser of symplectic-type group.
Constructing kernels

Assume $\phi : H \longrightarrow I$ where $K = \ker \phi$.

\[
\begin{array}{c}
H \\
\downarrow

K & \longrightarrow & I
\end{array}
\]

Sometime easy to obtain theoretically generating sets for $\ker \phi$.
e.g. Smaller Field, Semilinear, normaliser of symplectic-type group.

Otherwise, construct normal generating set for K, by evaluating
relators in presentation for I and take normal closure.

So we need a presentation for I.

To obtain presentation for node: need only presentation for
associated kernel and image.

So inductively need to know presentations only for the leaves
– or composition factors.
Assume $\phi : H \rightarrow I$ where $K = \ker \phi$.

\[
\begin{array}{c}
H \\
\downarrow
\end{array}
\]

\[
\begin{array}{c}
K \\
\downarrow
\end{array} \
I
\]

Sometime easy to obtain theoretically generating sets for $\ker \phi$.
e.g. Smaller Field, Semilinear, normaliser of symplectic-type group.

Otherwise, construct normal generating set for K, by evaluating
relators in presentation for I and take normal closure.

So we need a presentation for I.
Constructing kernels

Assume $\phi : H \hookrightarrow I$ where $K = \ker \phi$.

H

$K \triangleleft I$

Sometime easy to obtain theoretically generating sets for $\ker \phi$.

e.g. Smaller Field, Semilineal, normaliser of symplectic-type group.

Otherwise, construct normal generating set for K, by evaluating relators in presentation for I and take normal closure.

So we need a presentation for I.

To obtain presentation for node: need only presentation for associated kernel and image.
Assume $\phi : H \rightarrow I$ where $K = \ker \phi$.

\[H \xrightarrow{K} I \]

Sometime easy to obtain theoretically generating sets for $\ker \phi$. e.g. Smaller Field, Semilinear, normaliser of symplectic-type group.

Otherwise, construct normal generating set for K, by evaluating relators in presentation for I and take normal closure.

So we need a presentation for I.

To obtain presentation for node: need only presentation for associated kernel and image.

So inductively need to know presentations only for the leaves – or composition factors.
Babai and Szemerédi (1984): *length* of a presentation $P = \{X \mid R\}$ is number of symbols to write down the presentation.

S_n generated by $t_k = (k, k+1)$ for $1 \leq k < n$ with relations:

\[\hat{t}_k^2 = 1 \quad \text{for} \quad 1 \leq k < n, \]
\[\hat{(t_k - 1)t_k}^3 = 1 \quad \text{for} \quad 1 < k < n, \]
\[\hat{(t_j t_k)}^2 = 1 \quad \text{for} \quad 1 \leq j < k - 1 < n - 1. \]

Number of relations is $n(n - 1)/2$, and presentation length is $O(n^5)$. S_n acts on deleted permutation module: cost of evaluation of relations is $O(n^5)$.

Eamonn O'Brien
Towards effective computation
Babai and Szemerédi (1984): *length* of a presentation $P = \{X \mid R\}$ is number of symbols to write down the presentation.

Each generator is single symbol, relator is a string of symbols, exponents written in binary.
Babai and Szemerédi (1984): *length* of a presentation $P = \{X \mid R\}$ is number of symbols to write down the presentation.

Each generator is single symbol, relator is a string of symbols, exponents written in binary.

Example

S_n generated by $t_k = (k, k+1)$ for $1 \leq k < n$ with relations:

- $t_k^2 = 1$ for $1 \leq k < n$,
- $(t_{k-1}t_k)^3 = 1$ for $1 < k < n$,
- $(t_jt_k)^2 = 1$ for $1 \leq j < k - 1 < n - 1$.

Number of relations is $n(n-1)/2$, and presentation length is $O(n^2)$.

Babai and Szemerédi (1984): length of a presentation $P = \{X \mid R\}$ is number of symbols to write down the presentation.

Each generator is single symbol, relator is a string of symbols, exponents written in binary.

Example

S_n generated by $t_k = (k, k+1)$ for $1 \leq k < n$ with relations:

- $t_k^2 = 1$ for $1 \leq k < n$,
- $(t_{k-1} t_k)^3 = 1$ for $1 < k < n$,
- $(t_j t_k)^2 = 1$ for $1 \leq j < k-1 < n-1$.

Number of relations is $n(n-1)/2$, and presentation length is $O(n^2)$.

S_n acts on deleted permutation module: cost of evaluation of relations is $O(n^5)$.
Theorem (Guralnick, Kantor, Kassabov, Lubotzky, 2008)

Every non-abelian finite simple group of rank n over $\mathrm{GF}(q)$, with possible exception of Ree groups $^2G_2(q)$, has a presentation with a bounded number of generators and relations and total length $O(\log n + \log q)$.
Theorem (Guralnick, Kantor, Kassabov, Lubotzky, 2008)

Every non-abelian finite simple group of rank n over $\text{GF}(q)$, with possible exception of Ree groups $^2G_2(q)$, has a presentation with a bounded number of generators and relations and total length $O(\log n + \log q)$.

Exploits results of:

- Campbell, Robertson and Williams (1990): $\text{PSL}(2, p^n)$ has presentation on (at most) 3 generators and a bounded number of relations.
- Hulpke and Seress (2003): $\text{PSU}(3, q)$
Previous best: Babai *et al.* (1997) presentation of length $O(\log^2 |G|)$. Modifications of Curtis-Steinberg-Tits presentations for groups of Lie rank at least 2.
Previous best: Babai et al. (1997) presentation of length $O(\log^2 |G|)$. Modifications of Curtis-Steinberg-Tits presentations for groups of Lie rank at least 2.

Constructive version (L-G and O’B, ongoing): explicit short presentations for the classical groups on our standard generators. Complete for $\text{SL}, \text{Sp}, \text{SU}$.
Short presentations for S_n and A_n

Theorem (GKKL, 2006; Bray-Conder-LG-O'B, 2006)

S_n and A_n have presentations with a bounded number of generators and relations, and length $O(\log n)$.

Theorem (Bray-Conder-LG-O'B, 2006)

Let p be an odd prime, and let λ be a primitive element of $\text{GF}(p)$, with inverse μ. Then

$\{ a, c, t | a^p, ac, ac^2 - 1, (a^{(p+1)/2}c^4)^2, t^2, [t, a], [t, ca\lambda], [t, c]_3, (ttc^2ca)^2, (ttc^2ca\lambda)^2, (act)^{p+1} \}$

is a 3-generator 10-relator presentation of length $O(\log p)$ for S_{p+2}, in which atc stands for an $(p+2)$-cycle and t stands for a transposition.
Short presentations for S_n and A_n

Theorem (GKKL, 2006; Bray-Conder-LG-O’B, 2006)

A_n and S_n have presentations with a bounded number of generators and relations, and length $O(\log n)$.

Let p be an odd prime, and let λ be a primitive element of $\mathbb{GF}(p)$, with inverse μ. Then

\[
\begin{align*}
\{a, c, t | & a^p, acacac - 1,
(a (p+1)/2)c^4c^2, t^2, [t, a], [t, ca^\lambda], [t, c]^3, (ttc^ttca^\lambda)^2, (ttc^ttca^\lambda)^2, (atc)^{p+1}\} \\
\end{align*}
\]

is a 3-generator 10-relator presentation of length $O(\log p)$ for S_{p+2}, in which $attc$ stands for a $(p+2)$-cycle and t stands for a transposition.
Short presentations for S_n and A_n

Theorem (GKKL, 2006; Bray-Conder-LG-O’B, 2006)

A_n and S_n have presentations with a bounded number of generators and relations, and length $O(\log n)$.

Theorem (Bray-Conder-LG-O’B, 2006)

Let p be an odd prime, and let λ be a primitive element of $\text{GF}(p)$, with inverse μ. Then

$$\{ a, c, t \mid a^p, acacac^{-1}, \left(a^{(p+1)/2}ca^4c\right)^2, t^2, [t, a],$$

$$[t, ca^\lambda ca^\mu c], [t, c]^3, (tt^c tt^{-c}a\lambda)^2, (tt^c tt^{-c}a\lambda)^2, (at^c)^{p+1} \}$$

is a 3-generator 10-relator presentation of length $O(\log p)$ for S_{p+2}, in which att^c stands for a $(p+2)$-cycle and t stands for a transposition.
Previous best results: length $O(n \log n)$ (Moore, 1897)

Theorem (GKKL, 2008)

A_n has presentation on 3 generators, 4 relations, length $O(\log n)$.

Problem Is there a $O(\log n)$ presentation for S_n on $(1, 2)$ and $(1, 2, \ldots, n)$ with a uniformly bounded number of relators?
Previous best results: length $O(n \log n)$ (Moore, 1897)

Theorem (GKKL, 2008)

A_n has presentation on 3 generators, 4 relations, length $O(\log n)$.

S_n: presentation of length $O(n^2)$ on $(1, 2)$ and $(1, 2, \ldots, n)$ and 78 relations.
Previous best results: length $O(n \log n)$ (Moore, 1897)

Theorem (GKKL, 2008)

A_n has presentation on 3 generators, 4 relations, length $O(\log n)$.

S_n: presentation of length $O(n^2)$ on $(1, 2)$ and $(1, 2, \ldots, n)$ and 78 relations.

Problem

Is there a $O(\log n)$ presentation for S_n on $(1, 2)$ and $(1, 2, \ldots, n)$ with a uniformly bounded number of relators?
Given \(G = \langle X \rangle \leq \text{GL}(d, q) \) as input.

Output:

- a composition series: \(1 = G_0 \triangleleft G_1 \triangleleft G_2 \cdots \triangleleft G_m = G \).
- A representation \(S_k = \langle X_k \rangle \) of \(G_k/G_{k-1} \)
- Effective maps \(\tau_k : G_k \rightarrow S_k, \phi_k : S_k \rightarrow G_k \)
 \(\tau_k \) epimorphism with kernel \(G_{k-1} \)
- Map to write \(g \in G \) as word in \(X \).
Given $G = \langle X \rangle \leq \text{GL}(d, q)$ as input.

Output:

- a composition series: $1 = G_0 \triangleleft G_1 \triangleleft G_2 \cdots \triangleleft G_m = G$.
- A representation $S_k = \langle X_k \rangle$ of G_k / G_{k-1}
- Effective maps $\tau_k : G_k \to S_k$, $\phi_k : S_k \to G_k$
 τ_k epimorphism with kernel G_{k-1}
- Map to write $g \in G$ as word in X.

Construct presentation for group defined by tree and verify that G satisfies the relations.
G has characteristic series \mathcal{C} of subgroups:

$$1 \leq O_{\infty}(G) \leq S^*(G) \leq P(G) \leq G$$
G has characteristic series \mathcal{C} of subgroups:

$$1 \leq O_\infty(G) \leq S^*(G) \leq P(G) \leq G$$

$O_\infty(G)$ = largest soluble normal subgroup of G, soluble radical
Characteristic structure

G has characteristic series \mathcal{C} of subgroups:

$$1 \leq O_\infty(G) \leq S^*(G) \leq P(G) \leq G$$

$O_\infty(G)$ = largest soluble normal subgroup of G, soluble radical

$S^*(G)/O_\infty(G) = \text{Socle} \left(G/O_\infty(G) \right) = T_1 \times \ldots \times T_k$ where T_i non-abelian simple

$\phi: G \rightarrow \text{Sym}(k)$ is repn of G induced by conjugation on \{T_1, \ldots, T_k\} and $P(G)/S^*(G) \leq \text{Out}(T_1) \times \ldots \times \text{Out}(T_k)$ and so is soluble

$G/P(G) \leq \text{Sym}(k)$ where $k \leq \log |G|/\log 60$
Characteristic structure

G has characteristic series \mathcal{C} of subgroups:

$$1 \leq O_\infty(G) \leq S^*(G) \leq P(G) \leq G$$

$O_\infty(G) =$ largest soluble normal subgroup of G, soluble radical

$S^*(G)/O_\infty(G) =$ Socle $(G/O_\infty(G)) = T_1 \times \ldots \times T_k$ where T_i non-abelian simple

$\phi : G \to \text{Sym}(k)$ is repn of G induced by conjugation on

$\{T_1, \ldots, T_k\}$ and $P(G) = \ker \phi$
G has characteristic series C of subgroups:

$$1 \leq O_\infty(G) \leq S^*(G) \leq P(G) \leq G$$

$O_\infty(G) =$ largest soluble normal subgroup of G, soluble radical

$S^*(G)/O_\infty(G) = \text{Socle}(G/O_\infty(G)) = T_1 \times \ldots \times T_k$ where T_i non-abelian simple

$\phi : G \rightarrow \text{Sym}(k)$ is repn of G induced by conjugation on

$\{T_1, \ldots, T_k\}$ and $P(G) = \ker \phi$

$P(G)/S^*(G) \leq \text{Out}(T_1) \times \ldots \times \text{Out}(T_k)$ and so is soluble
Characteristic structure

G has characteristic series C of subgroups:

$$1 \leq O_\infty(G) \leq S^*(G) \leq P(G) \leq G$$

$O_\infty(G)$ = largest soluble normal subgroup of G, soluble radical

$S^*(G)/O_\infty(G) =$ Socle $(G/O_\infty(G)) = T_1 \times \ldots \times T_k$ where T_i non-abelian simple

$\phi : G \rightarrow \text{Sym}(k)$ is repn of G induced by conjugation on

$\{T_1, \ldots, T_k\}$ and $P(G) = \ker \phi$

$P(G)/S^*(G) \leq \text{Out}(T_1) \times \ldots \times \text{Out}(T_k)$ and so is soluble

$G/P(G) \leq \text{Sym}(k)$ where $k \leq \log |G| / \log 60$
Black-box model pioneered by Babai and Beals.
Black-box model pioneered by Babai and Beals.

Babai, Beals, Seress (2009): can construct \mathcal{C} directly in black-box groups in polynomial time (subject to Discrete Log solution and some other restrictions).
Black-box model pioneered by Babai and Beals.

Babai, Beals, Seress (2009): can construct C directly in black-box groups in polynomial time (subject to Discrete Log solution and some other restrictions).

Ongoing work with Holt and Roney-Dougal:

- refine composition series obtained from “geometric model” to obtain chief series reflecting this characteristic structure.
- exploit COMPOSITIONTREE and resulting C as infrastructure for algorithms to solve “real” problems.
Exploiting the characteristic series C

Cannon, Holt et al. (2000s): use C in practical algorithms.

$$1 \leq L := O_\infty(G) \leq S^*(G) \leq P(G) \leq G$$
Cannon, Holt et al. (2000s): use C in practical algorithms.

$$1 \leq L := O_\infty(G) \leq S^*(G) \leq P(G) \leq G$$

Also compute series

$$1 = N_0 \triangleleft N_1 \triangleleft \cdots \triangleleft N_r = L \triangleleft G$$

where $N_i \triangleleft G$ and N_i/N_{i-1} is elementary abelian.
Exploiting the characteristic series \mathcal{C}

Cannon, Holt et al. (2000s): use \mathcal{C} in practical algorithms.

$$1 \leq L := O_\infty(G) \leq S^*(G) \leq P(G) \leq G$$

Also compute series

$$1 = N_0 \triangleleft N_1 \triangleleft \cdots \triangleleft N_r = L \triangleleft G$$

where $N_i \triangleleft G$ and N_i/N_{i-1} is elementary abelian.

G/L has a trivial Fitting subgroup, so is a TF-group. Framework sometimes called **Trivial Fitting model of computation**.
The TF-model

\[
1 = N_0 \triangleleft N_1 \triangleleft \cdots \triangleleft N_r = L \leq S^*(G) \leq P(G) \leq G
\]

where \(N_i \trianglelefteq G \) and \(N_i/N_{i-1} \) is elementary abelian.
The TF-model

\[1 = N_0 \vartriangleleft N_1 \vartriangleleft \cdots \vartriangleleft N_r = L \leq S^*(G) \leq P(G) \leq G \]

where \(N_i \unlhd G \) and \(N_i/N_{i-1} \) is elementary abelian.

Given a problem:
1 = N_0 \triangleleft N_1 \triangleleft \cdots \triangleleft N_r = L \leq S^*(G) \leq P(G) \leq G

where \(N_i \trianglelefteq G \) and \(N_i/N_{i-1} \) is elementary abelian.

Given a problem:

Solve problem first in \(G/L = G/N_r \), and then, successively, solve it in \(G/N_i \), for \(i = r-1, \ldots, 0 \).
1 = N_0 \triangleleft N_1 \triangleleft \cdots \triangleleft N_r = L \leq S^*(G) \leq P(G) \leq G

where \(N_i \trianglelefteq G \) and \(N_i/N_{i-1} \) is elementary abelian.

Given a \textbf{problem}:

Solve problem first in \(G/L = G/N_r \), and then, successively, solve it in \(G/N_i \), for \(i = r - 1, \ldots, 0 \).

\(H := G/L \) is a TF-group.

So \(H \) has a socle \(S \) which is direct product of non-abelian simple groups \(T_i \) and these are permuted under conjugation by \(H \).
The TF-model

1 = N_0 \vartriangleleft N_1 \vartriangleleft \cdots \vartriangleleft N_r = L \leq S^*(G) \leq P(G) \leq G

where \(N_i \vartriangleleft G \) and \(N_i/N_{i-1} \) is elementary abelian.

Given a problem:

Solve problem first in \(G/L = G/N_r \), and then, successively, solve it in \(G/N_i \), for \(i = r-1, \ldots, 0 \).

\(H := G/L \) is a TF-group.

So \(H \) has a socle \(S \) which is direct product of non-abelian simple groups \(T_i \) and these are permuted under conjugation by \(H \).

Problem may have nice solution for \(H \).
The TF-model

\[1 = N_0 \triangleleft N_1 \triangleleft \cdots \triangleleft N_r = L \leq S^*(G) \leq P(G) \leq G \]

where \(N_i \triangleleft G \) and \(N_i/N_{i-1} \) is elementary abelian.

Given a problem:

Solve problem first in \(G/L = G/N_r \), and then, successively, solve it in \(G/N_i \), for \(i = r-1, \ldots, 0 \).

\(H := G/L \) is a TF-group.

So \(H \) has a socle \(S \) which is direct product of non-abelian simple groups \(T_i \) and these are permuted under conjugation by \(H \).

Problem may have nice solution for \(H \).

In many cases, easy to reduce the computation for TF-group \(H \) to almost simple groups.
Examples of practical algorithms using TF-model

- Determine conjugacy classes of elements of G; (Cannon & Souvignier, 1997)
- Determine maximal subgroups of G; (Cannon & Holt, 2004) and (Eick & Hulpke, 2001)
- Determine the automorphism group of G; (Cannon & Holt, 2003)
- Determine conjugacy classes of subgroups of G; (Cannon, Cox & Holt, 2001)

Most algorithms are representation-independent. Implementations use BSGS and Random Schreier for associated computations: so limited in range. Plan to use CompositionTree for these.
Examples of practical algorithms using TF-model

- Determine conjugacy classes of elements of G; (Cannon & Souvignier, 1997)
- Determine maximal subgroups of G; (Cannon & Holt, 2004) and (Eick & Hulpke, 2001)
- Determine the automorphism group of G; (Cannon & Holt, 2003)
- Determine conjugacy classes of subgroups of G; (Cannon, Cox & Holt, 2001)

Most algorithms are representation-independent. Implementations use BSGS and Random Schreier for associated computations; so limited in range. Plan to use CompositionTree for these.
Examples of practical algorithms using TF-model

- Determine conjugacy classes of elements of G; (Cannon & Souvignier, 1997)
- Determine maximal subgroups of G; (Cannon & Holt, 2004) and (Eick & Hulpke, 2001)

Most algorithms are representation-independent. Implementations use BSGS and Random Schreier for associated computations: so limited in range. Plan to use CompositionTree for these.
Examples of practical algorithms using TF-model

- Determine conjugacy classes of elements of G; (Cannon & Souvignier, 1997)
- Determine maximal subgroups of G; (Cannon & Holt, 2004) and (Eick & Hulpke, 2001)
- Determine the automorphism group of G; (Cannon & Holt, 2003)

Most algorithms are representation-independent. Implementations use BSGS and Random Schreier for associated computations: so limited in range. Plan to use CompositionTree for these.
Examples of practical algorithms using TF-model

- Determine conjugacy classes of elements of G; (Cannon & Souvignier, 1997)
- Determine maximal subgroups of G; (Cannon & Holt, 2004) and (Eick & Hulpke, 2001)
- Determine the automorphism group of G; (Cannon & Holt, 2003)
- Determine conjugacy classes of subgroups of G; (Cannon, Cox & Holt, 2001)

Most algorithms are representation-independent. Implementations use BSGS and Random Schreier for associated computations: so limited in range. Plan to use CompositionTree for these.
Examples of practical algorithms using TF-model

- Determine conjugacy classes of elements of G; (Cannon & Souvignier, 1997)
- Determine maximal subgroups of G; (Cannon & Holt, 2004) and (Eick & Hulpke, 2001)
- Determine the automorphism group of G; (Cannon & Holt, 2003)
- Determine conjugacy classes of subgroups of G; (Cannon, Cox & Holt, 2001)

Most algorithms are representation-independent.
Examples of practical algorithms using TF-model

- Determine conjugacy classes of elements of G; (Cannon & Souvignier, 1997)
- Determine maximal subgroups of G; (Cannon & Holt, 2004) and (Eick & Hulpke, 2001)
- Determine the automorphism group of G; (Cannon & Holt, 2003)
- Determine conjugacy classes of subgroups of G; (Cannon, Cox & Holt, 2001)

Most algorithms are representation-independent.

Implementations use BSGS and Random Schreier for associated computations: so limited in range.

Plan to use **CompositionTree** for these.
Almost simple groups: Conjugacy classes

Wall (1963): description of conjugacy classes and centralisers of elements of classical groups.

Murray & Haller (ongoing): algorithms, which given d and q, constructs classes for $\text{S}X(d,q) \leq K \leq \text{C}X(d,q)$.

Constructive recognition: provides $\phi: K \mapsto \overrightarrow{\bar{K}}$.

Embed TF-group $H = G/L$ in direct product W of $T_i \wr \text{Sym}(d_i)$, where T_i occurs d_i times as socle factor.

Conjugacy class representatives in wreath products described theoretically (Hulpke 2004; Cannon & Holt, 2006).

Eamonn O'Brien
Towards effective computation
Almost simple groups: Conjugacy classes

Wall (1963): description of conjugacy classes and centralisers of elements of classical groups.
Almost simple groups: Conjugacy classes

Wall (1963): description of conjugacy classes and centralisers of elements of classical groups.

Murray & Haller (ongoing): algorithms, which given d and q, constructs classes for $\text{SX}(d, q) \leq K \leq \text{CX}(d, q)$.
Almost simple groups: Conjugacy classes

Wall (1963): description of conjugacy classes and centralisers of elements of classical groups.

Murray & Haller (ongoing): algorithms, which given d and q, constructs classes for $SX(d, q) \leq K \leq CX(d, q)$.

Constructive recognition: provides $\phi : K \mapsto \bar{K}$.
Almost simple groups: Conjugacy classes

Wall (1963): description of conjugacy classes and centralisers of elements of classical groups.

Murray & Haller (ongoing): algorithms, which given d and q, constructs classes for $SX(d, q) \leq K \leq CX(d, q)$.

Constructive recognition: provides $\phi : K \mapsto \bar{K}$.

Embed TF-group $H = G/L$ in direct product W of $T_i \wr \text{Sym}(d_i)$, where T_i occurs d_i times as socle factor.
Almost simple groups: Conjugacy classes

Wall (1963): description of conjugacy classes and centralisers of elements of classical groups.

Murray & Haller (ongoing): algorithms, which given d and q, constructs classes for $SX(d, q) \leq K \leq CX(d, q)$.

Constructive recognition: provides $\phi : K \mapsto \bar{K}$.

Embed TF-group $H = G/L$ in direct product W of $T_i \wr \text{Sym}(d_i)$, where T_i occurs d_i times as socle factor.

Conjugacy class representatives in wreath products described theoretically (Hulpke 2004; Cannon & Holt, 2006).
Example: Automorphism group of G

Cannon & Holt, 2003

$H := G/L$ permutes the direct factors of its socle S by conjugation.
Cannon & Holt, 2003

$H := G/L$ permutes the direct factors of its socle S by conjugation.

Embed H in direct product D of $\text{Aut}(T_i) \wr \text{Sym}(d_i)$, where T_i occurs d_i times as socle factor of S.
Cannon & Holt, 2003

$H := G/L$ permutes the direct factors of its socle S by conjugation.

Embed H in direct product D of $\text{Aut}(T_i) \wr \text{Sym}(d_i)$, where T_i occurs d_i times as socle factor of S.

$\text{Aut}(H)$ is normaliser of the image of H in D.
Example: Automorphism group of G

Cannon & Holt, 2003

$H := G/L$ permutes the direct factors of its socle S by conjugation.

Embed H in direct product D of $\text{Aut}(T_i) \wr \text{Sym}(d_i)$, where T_i occurs d_i times as socle factor of S.

$\text{Aut}(H)$ is normaliser of the image of H in D.

Now lift results through elementary abelian layers, computing $\text{Aut}(G/N_i)$ successively.
Suppose $N \leq M \leq G$, where both M, N char in G and M/N is elementary abelian of order p^d.

\[G \]
\[M \]
\[N \]
Suppose $N \leq M \leq G$, where both M, N char in G and M/N is elementary abelian of order p^d.

Suppose $A_M = \text{Aut}(G/M)$ is known.
Suppose $N \leq M \leq G$, where both M, N char in G and M/N is elementary abelian of order p^d.

• G

Suppose $A_M = \text{Aut}(G/M)$ is known.

All automorphisms of G fix both M and N.

• M

• N
Suppose \(N \leq M \leq G \), where both \(M, N \) char in \(G \) and \(M/N \) is elementary abelian of order \(p^d \).

Suppose \(A_M = \text{Aut}(G/M) \) is known.

All automorphisms of \(G \) fix both \(M \) and \(N \).

\(A_N = \text{Aut}(G/N) \) has normal subgroups \(C \leq B \).

\(B \) induces identity on \(G/M \).

\(C \) induces identity on both \(G/M \) and \(M/N \).
M/N is $\mathbb{F}_p(G/M)$-module.

- A_N
- B
- C
M/N is $\mathbb{F}_p(G/M)$-module.

- Elements of C correspond to derivations from G/M to M/N.

Eamonn O'Brien
 Towards effective computation
M/N is $\mathbb{F}_p(G/M)$-module.

- Elements of C correspond to derivations from G/M to M/N.
- Elements of B/C correspond to module automorphisms of M/N. Can choose M and N to ensure that these tasks “easy”.

Hardest task: determine $S \leq A_M$ which lifts to G/N.

$S \leq A'_M$, subgroup of A_M whose elements preserve the isomorphism type of module M/N.

If so, all elements of A'_M lift.

Otherwise, must test each element of A'_M for lifting.
M/N is $\mathbb{F}_p(G/M)$-module.

- Elements of C correspond to derivations from G/M to M/N.

- Elements of B/C correspond to module automorphisms of M/N. Can choose M and N to ensure that these tasks “easy”.

- Hardest task: determine $S \leq A_M$ which lifts to G/N. $S \leq A'$, subgroup of A_M whose elements preserve the isomorphism type of module M/N.

Eamonn O'Brien
Towards effective computation
\(M/N \) is \(\mathbb{F}_p(G/M) \)-module.

- Elements of \(C \) correspond to derivations from \(G/M \) to \(M/N \).
- Elements of \(B/C \) correspond to module automorphisms of \(M/N \). Can choose \(M \) and \(N \) to ensure that these tasks “easy”.
- Hardest task: determine \(S \leq A_M \) which lifts to \(G/N \). \(S \leq A' \), subgroup of \(A_M \) whose elements preserve the isomorphism type of module \(M/N \).

\(G/N \) split extension of \(M/N \) by \(G/M \)?

If so, all elements of \(A' \) lift.

Otherwise, must test each element of \(A' \) for lifting.
Problem

Find the order of $H \leq \text{GL}(6, 5^2)$.
Problem

Find the order of \(H \leq \text{GL}(6, 5^2) \).

... using either of GAP or MAGMA.
Challenge problems

Problem

Find the order of $H \leq \text{GL}(6, 5^2)$.

... using either of GAP or Magma. Good progress, in practice.
Challenge problems

Problem

Find the order of $H \leq \text{GL}(6, 5^2)$.

... using either of GAP or Magma. *Good progress, in practice.*

Problem

Given $g \in \text{GL}(6, 5^2)$ *find its order.*
Challenge problems

Problem

Find the order of $H \leq \text{GL}(6, 5^2)$.

... using either of GAP or MAGMA. Good progress, in practice.

Problem

Given $g \in \text{GL}(6, 5^2)$ find its order.

Yes, in practice.
Challenge problems

Problem

Find the order of $H \leq \text{GL}(6, 5^2)$.

... using either of GAP or Magma. Good progress, in practice.

Problem

Given $g \in \text{GL}(6, 5^2)$ *find its order.*

Yes, in practice.

Problem

Find the normaliser in $\text{GL}(8, 3)$ *of a subgroup of moderate index.*

Not yet ...
Detinko & Flannery (2000s):
\(G \leq \text{GL}(d, R) \) where \(R \) is infinite domain, including \(\mathbb{Z}, \mathbb{Q} \), number fields, function fields.
Decide finiteness, nilpotency, primitivity etc.
“Groups, Representations, Number Theory”

- Hanmer Springs (near Christchurch)
- January 3-10, 2010
- NZMRI Summer meeting feature short lecture courses by:
 - Martin Bridson
 - Michel Broue
 - Persi Diaconis
 - Roger Howe
 - Gus Lehrer
 - Marcus du Sautoy

Organisers: Ben Martin and Eamonn O’Brien