Finding normal subgroups of even order

Max Neunhöffer

Motivation
Finding normal subgroups
A helper theorem
The algorithm
Involution centralisers
Done?
Recognising a proper normal subgroup
Finding normal subgroups in action
What can go wrong?

University of St Andrews

Bath, 7.8.2009
The problem

Problem

Let \(1 < N \triangleleft G = \langle g_1, \ldots, g_k \rangle \) be a finite group and \(N \) be a normal subgroup.
The problem

Problem

Let $1 < N \triangleleft G = \langle g_1, \ldots, g_k \rangle$ be a finite group and N be a normal subgroup.

Produce a non-trivial element of N as a word in the g_i.
The problem

Problem

Let $1 < N \triangleleft G = \langle g_1, \ldots, g_k \rangle$ be a finite group and N be a normal subgroup.

Produce a non-trivial element of N as a word in the g_i.

- Assume no more knowledge about G or N.

Motivation

Finding normal subgroups
- A helper theorem
- The algorithm
- Involution centralisers
- Done?
- Recognising a proper normal subgroup

Finding normal subgroups in action

What can go wrong?
The problem

Problem

Let $1 < N \trianglelefteq G = \langle g_1, \ldots, g_k \rangle$ be a finite group and N be a normal subgroup.
Produce a non-trivial element of N as a word in the g_i.

- Assume no more knowledge about G or N.
- We are looking for a randomised algorithm.
The problem

Problem

Let \(1 < N \triangleleft G = \langle g_1, \ldots, g_k \rangle \) be a finite group and \(N \) be a normal subgroup.

Produce a non-trivial element of \(N \) as a word in the \(g_i \).

- Assume no more knowledge about \(G \) or \(N \).
- We are looking for a randomised algorithm.
- Assume we can generate uniformly distributed random elements in \(G \).
The problem

Problem

Let $1 < N \trianglelefteq G = \langle g_1, \ldots, g_k \rangle$ be a finite group and N be a normal subgroup.

Produce a non-trivial element of N as a word in the g_i with “high probability”.

- Assume no more knowledge about G or N.
- We are looking for a randomised algorithm.
- Assume we can generate uniformly distributed random elements in G.
The problem

Problem

Let $1 < N 	riangleleft G = \langle g_1, \ldots, g_k \rangle$ be a finite group and N be a normal subgroup. Produce a non-trivial element of N as a word in the g_i with “high probability”.

- Assume no more knowledge about G or N.
- We are looking for a randomised algorithm.
- Assume we can generate uniformly distributed random elements in G.
- “High probability” means for the moment “higher than $1/[G : N]$”.
The problem

Problem

Let $1 < N \triangleleft G = \langle g_1, \ldots, g_k \rangle$ be a finite group and N be a normal subgroup.

Produce a non-trivial element of N as a word in the g_i with “high probability”.

- Assume no more knowledge about G or N.
- We are looking for a randomised algorithm.
- Assume we can generate uniformly distributed random elements in G.
- “High probability” means for the moment “higher than $1/[G : N]$”.
- Assume that we can compute in the group and can compute element orders.
Finding even order normal subgroups

Theorem

Let $1 < N \trianglelefteq G$ with $2 \mid |N|$.

Proof: We have $x N x = N$ and $|N|$ is even. The orbits of $\langle x \rangle$ on N have lengths 1 and 2, so there must be an even number of orbits of length 1.

In particular, $C \cap N$ contains an involution. That is, we can replace (N, G) with $(C \cap N, C)$ and use the statement again, provided we find another non-central involution.
Finding even order normal subgroups

Theorem

Let $1 < N \leq G$ with $2 \mid |N|$. Let $1 \neq x \in G \setminus Z(G)$ with $x^2 = 1$. Then, for $C := C_G(x)$, we have:

$1 < C \cap N \trianglelefteq C$ and $2 \mid |C \cap N|$.

Proof:

We have $xNx = N$ and $|N|$ is even. The orbits of $\langle x \rangle$ on N have lengths 1 and 2, so there must be an even number of orbits of length 1. In particular, $C \cap N$ contains an involution. That is, we can replace (N, G) with $(C \cap N, C)$ and use the statement again, provided we find another non-central involution.
Finding even order normal subgroups

Theorem

Let $1 < N \trianglelefteq G$ with $2 \mid |N|$.
Let $1 \neq x \in G \setminus Z(G)$ with $x^2 = 1$.

Then, for $C \coloneqq C_G(x)$, we have:
Theorem

Let $1 < N \trianglelefteq G$ with $2 \mid |N|$. Let $1 \neq x \in G \setminus Z(G)$ with $x^2 = 1$. Then, for $C := C_G(x)$, we have:

- $1 < C \cap N \trianglelefteq C$
- $2 \mid |C \cap N|$.

Proof:
We have $xNx = N$ and $|N|$ is even. The orbits of $\langle x \rangle$ on N have lengths 1 and 2, so there must be an even number of orbits of length 1. In particular, $C \cap N$ contains an involution. That is, we can replace (N, G) with $(C \cap N, C)$ and use the statement again, provided we find another non-central involution.
Finding even order normal subgroups

Theorem

Let \(1 < N \trianglelefteq G \) with \(2 \mid |N| \).

Let \(1 \neq x \in G \setminus Z(G) \text{ with } x^2 = 1 \).

Then, for \(C := C_G(x) \), we have:

- \(1 < C \cap N \trianglelefteq C \) and
- \(2 \mid |C \cap N| \).

Proof: We have \(xNx = N \) and \(|N| \) is even.
Finding normal subgroups of even order

Max Neunhöffer

Motivation
Finding normal subgroups
A helper theorem
The algorithm
Involution centralisers
Done?
Recognising a proper normal subgroup
Finding normal subgroups in action
What can go wrong?

Theorem

Let $1 < N \trianglelefteq G$ with $2 \mid |N|$.

Let $1 \neq x \in G \setminus Z(G)$ with $x^2 = 1$.

Then, for $C := C_G(x)$, we have:

- $1 < C \cap N \trianglelefteq C$ and
- $2 \mid |C \cap N|$.

Proof: We have $xNx = N$ and $|N|$ is even. The orbits of $\langle x \rangle$ on N have lengths 1 and 2, so there must be an even number of orbits of length 1.

■
Finding even order normal subgroups

Theorem

Let $1 < N \trianglelefteq G$ with $2 \mid |N|$. Let $1 \neq x \in G \setminus Z(G)$ with $x^2 = 1$. Then, for $C := C_G(x)$, we have:

- $1 < C \cap N \trianglelefteq C$ and
- $2 \mid |C \cap N|$.

Proof: We have $xNx = N$ and $|N|$ is even. The orbits of $\langle x \rangle$ on N have lengths 1 and 2, so there must be an even number of orbits of length 1.

In particular, $C \cap N$ contains an involution.
Finding even order normal subgroups

Theorem

Let $1 < N \trianglelefteq G$ with $2 \mid |N|$.

Let $1 \neq x \in G \setminus Z(G)$ with $x^2 = 1$.

Then, for $C := C_G(x)$, we have:

- $1 < C \cap N \trianglelefteq C$ and
- $2 \mid |C \cap N|$.

Proof: We have $xNx = N$ and $|N|$ is even. The orbits of $\langle x \rangle$ on N have lengths 1 and 2, so there must be an even number of orbits of length 1.

In particular, $C \cap N$ contains an involution.

That is, we can replace (N, G) with $(C \cap N, C)$ and use the statement again, provided we find another non-central involution.
Finding $N \triangleleft G$

We want to find an N with $1 < N \triangleleft G$ and $2 \mid |N|$, or conclude that there is none.

We can proceed as follows: Initialise $H := G$. Then

1. Find a non-central involution $x \in H$. If none found, goto 4.
Finding normal subgroups of even order

Max Neunhöffer

Motivation
Finding normal subgroups
A helper theorem
The algorithm
Involution centralisers
Done?
Recognising a proper normal subgroup
Finding normal subgroups in action
What can go wrong?

Finding \(N \triangleleft G \)

We want to find an \(N \) with \(1 < N \trianglelefteq G \) and \(2 \mid |N| \), or conclude that there is none.

We can proceed as follows: Initialise \(H := G \). Then

1. **Find** a non-central involution \(x \in H \). If none found, goto 4.
2. **Compute** its involution centraliser \(C := C_H(x) \).

\(\)
Finding $N \triangleleft G$

We want to find an N with $1 < N \triangleleft G$ and $2 \mid |N|$, or conclude that there is none.

We can proceed as follows: Initialise $H := G$. Then

1. **Find** a non-central involution $x \in H$. If none found, goto 4.
2. **Compute** its involution centraliser $C := C_H(x)$.
3. **Replace** H with C and goto 1.
Finding $N \triangleleft G$

We want to find an N with $1 < N \triangleleft G$ and $2 \mid |N|$, or conclude that there is none.

We can proceed as follows: Initialise $H := G$. Then

1. **Find** a non-central involution $x \in H$. If none found, goto 4.

2. **Compute** its involution centraliser $C := C_H(x)$.

3. **Replace** H with C and goto 1.

4. Let D be the group generated by all central involutions we found.
Finding $N \triangleleft G$

We want to find an N with $1 < N \triangleleft G$ and $2 \mid |N|$, or conclude that there is none.

We can proceed as follows: Initialise $H := G$. Then

1. **Find a non-central involution** $x \in H$. If none found, goto 4.
2. **Compute** its involution centraliser $C := C_H(x)$.
3. **Replace** H with C and goto 1.
4. Let D be the group generated by all central involutions we found.
5. For all $1 \neq x \in D$: **Test** if $\langle x^G \rangle \neq G$.

We find involutions by powering up random elements.
Finding $N \triangleleft G$

We want to find an N with $1 < N \triangleleft G$ and $2 \mid |N|$, or conclude that there is none.

We can proceed as follows: Initialise $H := G$. Then

1. Find a non-central involution $x \in H$. If none found, goto 4.

2. Compute its involution centraliser $C := C_H(x)$.

3. Replace H with C and goto 1.

4. Let D be the group generated by all central involutions we found.

5. For all $1 \neq x \in D$: Test if $\langle x^G \rangle \neq G$.

6. If no normal closure is properly contained, conclude that G does not contain such an $|N|$ as assumed.
Finding $N \triangleleft G$

We want to find an N with $1 < N \leq G$ and $2 \mid |N|$, or conclude that there is none.

We can proceed as follows: Initialise $H := G$. Then

1. **Find** a non-central involution $x \in H$. If none found, goto 4.
2. **Compute** its involution centraliser $C := C_H(x)$.
3. **Replace** H with C and goto 1.
4. Let D be the group generated by all central involutions we found.
5. For all $1 \neq x \in D$: **Test** if $\langle x^G \rangle \neq G$.
6. If no normal closure is properly contained, conclude that G does not contain such an $|N|$ as assumed.

We find involutions by powering up random elements.
Involution centralisers
How can we compute the centraliser of an involution?
Involution centralisers

How can we compute the centraliser of an involution?

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: $G = \langle g_1, \ldots, g_k \rangle$ and an involution $x \in G$.

initialise $\text{gens} := [x]$

repeat

$y := \text{RANDOM ELEMENT}(G)$

$c := x^{-1} y^{-1} xy \text{ and } o := \text{ORDER}(c)$

until o was odd often enough or gens long enough

return gens

Note: If $xy = yx$ then $c = 1$ and o is odd, then z is uniformly distributed in $C_G(x)$.
Involution centralisers
How can we compute the centraliser of an involution?

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: $G = \langle g_1, \ldots, g_k \rangle$ and an involution $x \in G$. initialise $\textit{gens} := [x]$

repeat

$y := \text{RANDOMELEMENT}(G)$
$c := x^{-1}y^{-1}xy$ and $o := \text{ORDER}(c)$

if o is even then

append $c^{o/2}$ and $(x^{-1}yxy^{-1})^{o/2}$ to \textit{gens}

else

append $z := y \cdot c^{(o-1)/2}$ to \textit{gens}

Note: If $xy = yx$ then $c = 1$ and $o = 1$ and $z = y$.
And: If o is odd, then z is uniformly distributed in $CG(x)$.

Finding normal subgroups of even order
Max Neunhöffer

Motivation
Finding normal subgroups
A helper theorem
The algorithm
Involution centralisers
Done?
Recognising a proper normal subgroup
Finding normal subgroups in action
What can go wrong?
Involution centralisers

How can we compute the centraliser of an involution?

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: $G = \langle g_1, \ldots, g_k \rangle$ and an involution $x \in G$.

initialise $\text{gens} := [x]$

repeat

\[y := \text{RANDOMELEMENT}(G) \]
\[c := x^{-1} y^{-1} xy \quad \text{and} \quad o := \text{ORDER}(c) \]

if o is even then

append $c^{o/2}$ and $(x^{-1} y xy^{-1})^{o/2}$ to gens

else

append $z := y \cdot c^{(o-1)/2}$ to gens

until o was odd often enough or gens long enough

return gens
Involution centralisers

How can we compute the centraliser of an involution?

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

- **Input:** $G = \langle g_1, \ldots, g_k \rangle$ and an involution $x \in G$.
- initialise $\text{gens} := [x]$
- repeat
 - $y := \text{RANDOMELEMENT}(G)$
 - $c := x^{-1}y^{-1}xy$ and $o := \text{ORDER}(c)$
 - if o is even then
 - append $c^{o/2}$ and $(x^{-1}yxy^{-1})^{o/2}$ to gens
 - else
 - append $z := y \cdot c^{(o-1)/2}$ to gens
- until o was odd often enough or gens long enough
- return gens

Note: If $xy = yx$ then $c = 1_G$ and $o = 1$ and $z = y$.
Involution centralisers

How can we compute the centraliser of an involution?

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: $G = \langle g_1, \ldots, g_k \rangle$ and an involution $x \in G$.

initialise $\textit{gens} := [x]$

repeat

\[y := \text{RANDOMELEMENT}(G) \]
\[c := x^{-1}y^{-1}xy \quad \text{and} \quad o := \text{ORDER}(c) \]

\textbf{if} o is even \textbf{then}

append $c^{o/2}$ and $(x^{-1}yxy^{-1})^{o/2}$ to \textit{gens}

\textbf{else}

append $z := y \cdot c^{(o-1)/2}$ to \textit{gens}

\textbf{until} o was odd often enough or \textit{gens} long enough

return \textit{gens}

Note: If $xy = yx$ then $c = 1_G$ and $o = 1$ and $z = y$.

And: If o is odd, then z is uniformly distributed in $C_G(x)$.

Finding $N \triangleleft G$

We want to find an N with $1 < N \triangleleft G$ and $2 \mid |N|$, or conclude that there is none.

We can proceed as follows: Initialise $H := G$. Then

1. **Find** a non-central involution $x \in H$. If none found, goto 4.
2. **Compute** its involution centraliser $C := C_H(x)$.
3. **Replace** H with C and goto 1.
4. Let D be the group generated by all central involutions we found.
5. For all $1 \neq x \in D$: **Test** if $\langle x^G \rangle \neq G$.
6. If no normal closure is properly contained, conclude that G does not contain such an $|N|$ as assumed.
Finding \(N \triangleleft G \)

We want to find an \(N \) with \(1 < N \triangleleft G \) and \(2 \mid |N| \), or conclude that there is none.

We can proceed as follows: Initialise \(H := G \). Then

1. Find a non-central involution \(x \in H \). If none found, goto 4.
2. Compute its involution centraliser \(C := C_H(x) \).
3. Replace \(H \) with \(C \) and goto 1.
4. Let \(D \) be the group generated by all central involutions we found.
5. For all \(1 \neq x \in D \): Test if \(\langle x^G \rangle \neq G \).
6. If no normal closure is properly contained, conclude that \(G \) does not contain such an \(|N| \) as assumed.

How do we test if we have a proper normal subgroup?
Testing for a proper normal subgroup

The following method by Charles Leedham-Green estimates the order of $gN \in G/N$:

```
Algorithm: ESTIMATEORDER
Input: $g \in G$ and $N = \langle n_1, \ldots, n_m \rangle \triangleleft G$.
initialise $o := ORDER(g)$
for $i := 1$ to 20 do
    $y :=$ RANDOMELEMENT($N$)
    $o :=$ GCD($o$, $ORDER(yg)$)
if $o = 1$ then
    return 1
return $o$
```

This is a one-sided Monte Carlo algorithm. We estimate all orders $g_iN \in G/N$ to decide $G = N$.
Testing for a proper normal subgroup

The following method by Charles Leedham-Green estimates the order of \(gN \in G/N \):

Algorithm: ESTIMATEORDER

Input: \(g \in G \) and a \(N = \langle n_1, \ldots, n_m \rangle \trianglelefteq G \).
Testing for a proper normal subgroup

The following method by Charles Leedham-Green estimates the order of $gN \in G/N$:

Algorithm: ESTIMATEORDER

- **Input:** $g \in G$ and a $N = \langle n_1, \ldots, n_m \rangle \unlhd G$.
- **initialise** $o := \text{ORDER}(g)$
- **for** $i := 1$ to 20 **do**
 - $y := \text{RANDOMELEMENT}(N)$
 - $o := \text{GCD}(o, \text{ORDER}(yg))$
- **return** o

This is a one-sided Monte Carlo algorithm. We estimate all orders $gN \in G/N$ to decide $G = N$.
Testing for a proper normal subgroup

The following method by Charles Leedham-Green estimates the order of \(gN \in G/N \):

Algorithm: ESTIMATEORDER

Input: \(g \in G \) and a \(N = \langle n_1, \ldots, n_m \rangle \trianglelefteq G \).

Initialise \(o := \text{ORDER}(g) \)

for \(i := 1 \) to 20 **do**

\(y := \text{RANDOMELEMENT}(N) \)

\(o := \text{GCD}(o, \text{ORDER}(yg)) \)

This is a one-sided Monte Carlo algorithm. We estimate all orders \(g_iN \in G/N \) to decide \(G = N \).
The following method by Charles Leedham-Green estimates the order of $gN \in G/N$:

Algorithm: ESTIMATEORDER

```
Input: $g \in G$ and a $N = \langle n_1, \ldots, n_m \rangle \trianglelefteq G$.
 initialise $o := \text{ORDER}(g)$
 for $i := 1$ to $20$ do
  $y := \text{RANDOMELEMENT}(N)$
  $o := \text{GCD}(o, \text{ORDER}(yg))$
 if $o = 1$ then
  return 1
```

This is a one-sided Monte Carlo algorithm. We estimate all orders $g_i N \in G/N$ to decide $G = N$.
Testing for a proper normal subgroup

The following method by Charles Leedham-Green estimates the order of $gN \in G/N$:

Algorithm: ESTIMATEORDER

```plaintext
Input: $g \in G$ and a $N = \langle n_1, \ldots, n_m \rangle \triangleleft G$.
initialise $o := \text{ORDER}(g)$
for $i := 1$ to 20 do
    $y := \text{RANDOMELEMENT}(N)$
    $o := \text{GCD}(o, \text{ORDER}(yg))$
if $o = 1$ then
    return 1
return $o$
```

This is a one-sided Monte Carlo algorithm. We estimate all orders $g_i N \in G/N$ to decide $G = N$.

Motivation
Finding normal subgroups
A helper theorem
The algorithm
Involution centralisers
Done?
Recognising a proper normal subgroup
Finding normal subgroups in action
What can go wrong?
The following method by Charles Leedham-Green estimates the order of $gN \in G/N$:

Algorithm: ESTIMATEORDER

Input: $g \in G$ and a $N = \langle n_1, \ldots, n_m \rangle \trianglelefteq G$.

initialise $o := \text{ORDER}(g)$

for $i := 1$ to 20 **do**

$y := \text{RANDOMELEMENT}(N)$

$o := \text{GCD}(o, \text{ORDER}(yg))$

if $o = 1$ **then**

return 1

return o

This is a one-sided Monte Carlo algorithm.
Testing for a proper normal subgroup

The following method by Charles Leedham-Green estimates the order of \(gN \in G/N \):

Algorithm: \textsc{EstimateOrder}

- **Input:** \(g \in G \) and a \(N = \langle n_1, \ldots, n_m \rangle \trianglelefteq G \).
- initialise \(o := \text{ORDER}(g) \)
- for \(i := 1 \) to 20 do
 - \(y := \text{RandomElement}(N) \)
 - \(o := \text{GCD}(o, \text{ORDER}(yg)) \)
 - if \(o = 1 \) then
 - return 1
- return \(o \)

This is a one-sided Monte Carlo algorithm.

We estimate all orders \(g_iN \in G/N \) to decide \(G = N \).
The method in action

We look at the following examples:

1. $S_{30} \wr S_7 < S_{210}$ (imprimitive action)
2. 3rd maximal subgroup of M_{24} on 24 points: $2^4 : A_8$
3. 5th maximal subgroup of M_{24} on 24 points: $2^6 : 3.S_6$
4. Double cover $2.Suz$ of the sporadic Suzuki group
5. $Sp(6, 2) \wr S_6 < GL(36, 2)$ (imprimitive)
6. $SL(6, 3) \circ M12 < GL(10, 3)$ in $GL(60, 3)$ (tensor decomposable)
Finding normal subgroups of even order

Max Neunhöffer

Motivation

Finding normal subgroups
A helper theorem
The algorithm
Involution centralisers
Done?
Recognising a proper normal subgroup

Finding normal subgroups in action

What can go wrong?

Actually, lots of things!
We could have trouble to find elements of even order.
An order computation could take unpleasantly long.
There could be no non-central involutions.
There could be extremely many central involutions.
We could get an involution centraliser wrong.
We could get a normal closure wrong.
We could get an order estimate wrong.
G might not have an even order normal subgroup.
What can go wrong?

Actually, lots of things!
What can go wrong?

Actually, lots of things!

- We could have trouble to find elements of even order.
What can go wrong?

Actually, lots of things!

- We could have trouble to find elements of even order.
- An order computation could take unpleasantly long.
What can go wrong?

Actually, lots of things!

- We could have trouble to find elements of even order.
- An order computation could take unpleasantly long.
- There could be no non-central involutions.
What can go wrong?

Actually, lots of things!

- We could have trouble to find elements of even order.
- An order computation could take unpleasantly long.
- There could be no non-central involutions.
- There could be extremely many central involutions.
What can go wrong?

Actually, lots of things!

- We could have trouble to find elements of even order.
- An order computation could take unpleasantly long.
- There could be no non-central involutions.
- There could be extremely many central involutions.
- We could get an involution centraliser wrong.
What can go wrong?

Actually, lots of things!

- We could have trouble to find elements of even order.
- An order computation could take unpleasantly long.
- There could be no non-central involutions.
- There could be extremely many central involutions.
- We could get an involution centraliser wrong.
- We could get a normal closure wrong.
What can go wrong?

Actually, lots of things!

- We could have trouble to find elements of even order.
- An order computation could take unpleasantly long.
- There could be no non-central involutions.
- There could be extremely many central involutions.
- We could get an involution centraliser wrong.
- We could get a normal closure wrong.
- We could get an order estimate wrong.
What can go wrong?

Actually, lots of things!

- We could have trouble to find elements of even order.
- An order computation could take unpleasantly long.
- There could be no non-central involutions.
- There could be extremely many central involutions.
- We could get an involution centraliser wrong.
- We could get a normal closure wrong.
- We could get an order estimate wrong.
- G might not have an even order normal subgroup.