Engel conditions on orderable groups and in combinatorial problems

Marcel HERZOG, Patrizia LONGOBARDI, Mercede MAJ

TEL AVIV UNIVERSITY
UNIVERSITÀ DEGLI STUDI DI SALERNO

Bath, 13th August 2009
Engel elements

G a group, $x, y \in G$, n a non-negative integer. The commutator $[x, ny]$ is defined, by induction, by the rules:

$$[x, 0y] = x, \quad [x, n+1y] = [[x, ny], y].$$

$x \in G$ is a right Engel element of G (a left Engel element of G) if for each $g \in G$ there is an integer $n = n(x, g) \geq 0$ such that

$$[x, ng] = 1 \quad ([g, nx] = 1).$$

If n can be chosen independently on g we say that x is a right n-Engel element (a left n-Engel element).

If every element of a group G is a right Engel element (equivalently every element of G is a left Engel element), then G is called an Engel group. G is called an n-Engel group if

$$[x, ny] = 1, \forall x, y \in G$$
Engel elements

G a group, $x, y \in G$, n a non-negative integer.
The commutator $[x, ny]$ is defined, by induction, by the rules:

$$[x, 0y] = x, \quad [x, n+1y] = [[x, ny], y].$$

$x \in G$ is a right Engel element of G (a left Engel element of G) if for each $g \in G$ there is an integer $n = n(x, g) \geq 0$ such that

$$[x, ng] = 1 \quad ([g, nx] = 1).$$

If n can be chosen independently on g we say that x is a right n-Engel element (a left n-Engel element).

If every element of a group G is a right Engel element (equivalently every element of G is a left Engel element), then G is called an Engel group.

G is called an n-Engel group if

$$[x, ny] = 1, \forall x, y \in G$$
Engel elements

G a group, $x, y \in G$, n a non-negative integer. The commutator $[x, ny]$ is defined, by induction, by the rules:

$$[x, 0y] = x, \quad [x, n+1y] = [[x, ny], y].$$

$x \in G$ is a right Engel element of G (a left Engel element of G) if for each $g \in G$ there is an integer $n = n(x, g) \geq 0$ such that

$$[x, ng] = 1 \quad ([g, nx] = 1).$$

If n can be chosen independently on g we say that x is a right n-Engel element (a left n-Engel element).

If every element of a group G is a right Engel element (equivalently every element of G is a left Engel element), then G is called an Engel group. G is called an n-Engel group if

$$[x, ny] = 1, \forall x, y \in G$$
Engel elements

G a group, $x, y \in G$, n a non-negative integer.
The commutator $[x, ny]$ is defined, by induction, by the rules:

$$[x, 0y] = x, \ [x, n+1y] = [[x, ny], y].$$

$x \in G$ is a right Engel element of G (a left Engel element of G) if for each $g \in G$ there is an integer $n = n(x, g) \geq 0$ such that

$$[x, ng] = 1 \ ([g, nx] = 1).$$

If n can be chosen independently on g we say that x is a right n-Engel element (a left n-Engel element).
If every element of a group G is a right Engel element (equivalently every element of G is a left Engel element), then G is called an Engel group.
G is called an n-Engel group if

$$[x, ny] = 1, \forall x, y \in G$$
Engel elements

\(G \) a group, \(x, y \in G \), \(n \) a non-negative integer.

The commutator \([x, ny] \) is defined, by induction, by the rules:

\[
[x, 0y] = x, \quad [x, n+1y] = [[x, ny], y].
\]

\(x \in G \) is a **right Engel element** of \(G \) (a **left Engel element** of \(G \)) if for each \(g \in G \) there is an integer \(n = n(x, g) \geq 0 \) such that

\[
[x, ng] = 1 \quad ([g, nx] = 1).
\]

If \(n \) can be chosen independently on \(g \) we say that \(x \) is a **right \(n \)-Engel element** (a **left \(n \)-Engel element**).

If every element of a group \(G \) is a right Engel element (equivalently every element of \(G \) is a left Engel element), then \(G \) is called an **Engel group**. \(G \) is called an **\(n \)-Engel group** if

\[
[x, ny] = 1, \forall x, y \in G
\]
Engel elements

G a group, $x, y \in G$, n a non-negative integer.
The commutator $[x, ny]$ is defined, by induction, by the rules:

$$[x, 0y] = x, \quad [x, n+1y] = [[x, ny], y].$$

$x \in G$ is a right Engel element of G (a left Engel element of G) if for each $g \in G$ there is an integer $n = n(x, g) \geq 0$ such that

$$[x, ng] = 1 \quad ([g, nx] = 1).$$

If n can be chosen independently on g we say that x is a right n-Engel element (a left n-Engel element).
If every element of a group G is a right Engel element (equivalently every element of G is a left Engel element), then G is called an Engel group.
G is called an n-Engel group if

$$[x, ny] = 1, \forall x, y \in G$$
Remark

- \(G \) a nilpotent group of class \(c \) \(\implies \) \(G \) a \(c \)-Engel group.

- There exists an infinite 3-Engel group with trivial center, thus \(k \)-Engel groups need not to be nilpotent.

Remark

- \(G \) a finite \(k \)-Engel group \(\implies \) \(G \) nilpotent [M. Zorn, 1937]
- \(G \) a soluble \(k \)-Engel group \(\implies \) \(G \) locally nilpotent [K. Gruenberg, 1959]
- \(G \) a residually finite \(k \)-Engel group \(\implies \) \(G \) locally nilpotent [J. S. Wilson, 1991]
- \(G \) a locally graded \(k \)-Engel group \(\implies \) \(G \) locally nilpotent [Y.K. Kim and A. H. Rhemtulla, 1995]

Question

Is every \(k \)-Engel group locally nilpotent?
Remark

- **G a nilpotent group of class c** \implies **G a c-Engel group.**
- **There exists an infinite 3-Engel group with trivial center,** thus **k-Engel groups need not to be nilpotent.**

Remark

- **G a finite k-Engel group** \implies **G nilpotent** [M. Zorn, 1937]
- **G a soluble k-Engel group** \implies **G locally nilpotent** [K. Gruenberg, 1959]
- **G a residually finite k-Engel group** \implies **G locally nilpotent** [J. S. Wilson, 1991]
- **G a locally graded k-Engel group** \implies **G locally nilpotent** [Y.K. Kim and A. H. Rhemtulla, 1995]

Question

Is every k-Engel group locally nilpotent?
Remark

- G a nilpotent group of class $c \implies G$ a c-Engel group.
- There exists an infinite 3-Engel group with trivial center, thus k-Engel groups need not to be nilpotent.

Remark

- G a finite k-Engel group $\implies G$ nilpotent [M. Zorn, 1937]
- G a soluble k-Engel group $\implies G$ locally nilpotent [K. Gruenberg, 1959]
- G a residually finite k-Engel group $\implies G$ locally nilpotent [J. S. Wilson, 1991]
- G a locally graded k-Engel group $\implies G$ locally nilpotent [Y.K. Kim and A. H. Rhemtulla, 1995]

Question

Is every k-Engel group locally nilpotent?
Remark
- G a nilpotent group of class $c \implies G$ a c-Engel group.
- There exists an infinite 3-Engel group with trivial center, thus k-Engel groups need not to be nilpotent.

Remark
- G a finite k-Engel group $\implies G$ nilpotent [M. Zorn, 1937]
- G a soluble k-Engel group $\implies G$ locally nilpotent [K. Gruenberg, 1959]
 - G a residually finite k-Engel group $\implies G$ locally nilpotent [J. S. Wilson, 1991]
 - G a locally graded k-Engel group $\implies G$ locally nilpotent [Y.K. Kim and A. H. Rhemtulla, 1995]

Question
Is every k-Engel group locally nilpotent?
Remark

- G a nilpotent group of class $c \implies G$ a c-Engel group.
- There exists an infinite 3-Engel group with trivial center, thus k-Engel groups need not to be nilpotent.

Remark

- G a finite k-Engel group $\implies G$ nilpotent [M. Zorn, 1937]
- G a soluble k-Engel group $\implies G$ locally nilpotent [K. Gruenberg, 1959]
- G a residually finite k-Engel group $\implies G$ locally nilpotent [J. S. Wilson, 1991]
- G a locally graded k-Engel group $\implies G$ locally nilpotent [Y.K. Kim and A. H. Rhemtulla, 1995]

Question

Is every k-Engel group locally nilpotent?
Remark

- G a nilpotent group of class $c \implies G$ a c-Engel group.
- There exists an infinite 3-Engel group with trivial center, thus k-Engel groups need not to be nilpotent.

Remark

- G a finite k-Engel group $\implies G$ nilpotent [M. Zorn, 1937]
- G a soluble k-Engel group $\implies G$ locally nilpotent [K. Gruenberg, 1959]
- G a residually finite k-Engel group $\implies G$ locally nilpotent [J. S. Wilson, 1991]
- G a locally graded k-Engel group $\implies G$ locally nilpotent [Y.K. Kim and A. H. Rhemtulla, 1995]

Question

Is every k-Engel group locally nilpotent?
Remark

- G a nilpotent group of class $c \implies G$ a c-Engel group.
- There exists an infinite 3-Engel group with trivial center, thus k-Engel groups need not to be nilpotent.

Remark

- G a finite k-Engel group $\implies G$ nilpotent [M. Zorn, 1937]
- G a soluble k-Engel group $\implies G$ locally nilpotent [K. Gruenberg, 1959]
- G a residually finite k-Engel group $\implies G$ locally nilpotent [J. S. Wilson, 1991]
- G a locally graded k-Engel group $\implies G$ locally nilpotent [Y.K. Kim and A. H. Rhemtulla, 1995]

Question

Is every k-Engel group locally nilpotent?
Remark

- G a nilpotent group of class $c \implies G$ a c-Engel group.
- There exists an infinite 3-Engel group with trivial center, thus k-Engel groups need not to be nilpotent.

Remark

- G a finite k-Engel group $\implies G$ nilpotent [M. Zorn, 1937]
- G a soluble k-Engel group $\implies G$ locally nilpotent [K. Gruenberg, 1959]
- G a residually finite k-Engel group $\implies G$ locally nilpotent [J. S. Wilson, 1991]
- G a locally graded k-Engel group $\implies G$ locally nilpotent [Y.K. Kim and A. H. Rhemtulla, 1995]

Question

Is every k-Engel group locally nilpotent?
Orderable Engel groups

G a group, \leq a partial order on the set G

(G, \leq) is a **partially ordered group** if, for any $x, y, a, b \in G$,

$$x \leq y \implies axb \leq ayb.$$

If (G, \leq) is a partially ordered group and the order \leq is a total order in G, we say that (G, \leq) is a **totally ordered group** or simply an **ordered group**.

G is an **orderable group** (an **O-group**) if there exists a total order \leq such that (G, \leq) is an ordered group.

Example

Any nilpotent torsion-free group is an orderable group.
Orderable Engel groups

G a group, \leq a partial order on the set G

(G, \leq) is a partially ordered group if, for any $x, y, a, b \in G$,

$$x \leq y \implies axb \leq ayb.$$

If (G, \leq) is a partially ordered group and the order \leq is a total order in G, we say that (G, \leq) is a totally ordered group or simply an ordered group.

G is an orderable group (an O-group) if there exists a total order \leq such that (G, \leq) is an ordered group.

Example

Any nilpotent torsion-free group is an orderable group.
G a group, \(\leq \) a partial order on the set \(G \)

\((G, \leq)\) is a partially ordered group if, for any \(x, y, a, b \in G \),

\[x \leq y \implies axb \leq ayb. \]

If \((G, \leq)\) is a partially ordered group and the order \(\leq \) is a total order in \(G \),
we say that \((G, \leq)\) is a totally ordered group or simply an ordered group.

\(G \) is an orderable group (an O-group) if there exists a total order \(\leq \) such
that \((G, \leq)\) is an ordered group.

Example

Any nilpotent torsion-free group is an orderable group.
G a group, \(\leq \) a partial order on the set \(G \)

\((G, \leq)\) is a **partially ordered group** if, for any \(x, y, a, b \in G \),

\[x \leq y \implies axb \leq ayb. \]

If \((G, \leq)\) is a partially ordered group and the order \(\leq \) is a total order in \(G \), we say that \((G, \leq)\) is a **totally ordered group** or simply an **ordered group**.

\(G \) is an **orderable group** (an \(O \)-group) if there exists a total order \(\leq \) such that \((G, \leq)\) is an ordered group.

Example

Any nilpotent torsion-free group is an orderable group.
G a group, \leq a partial order on the set G

(G, \leq) is a **partially ordered group** if, for any $x, y, a, b \in G$,

$$x \leq y \implies axb \leq ayb.$$

If (G, \leq) is a partially ordered group and the order \leq is a total order in G, we say that (G, \leq) is a **totally ordered group** or simply an **ordered group**.

G is an **orderable group** (an O-group) if there exists a total order \leq such that (G, \leq) is an ordered group.

Example

Any nilpotent torsion-free group is an orderable group.
Orderable Engel groups

G a group, \leq a partial order on the set G

(G, \leq) is a \textit{partially ordered group} if, for any $x, y, a, b \in G$,

$$x \leq y \implies axb \leq ayb.$$

If (G, \leq) is a partially ordered group and the order \leq is a total order in G, we say that (G, \leq) is a \textit{totally ordered group} or simply an \textit{ordered group}.

G is an \textit{orderable group} (an O-group) if there exists a total order \leq such that (G, \leq) is an ordered group.

\textbf{Example}

Any nilpotent torsion-free group is an orderable group.
Theorem (A)

[Y. K. Kim, A. H. Rhemtulla, 1995] An orderable k-Engel group is nilpotent of class \(\leq f(k) \).

It is very easy to see that an orderable group is always torsion-free and, as noticed before, every nilpotent torsion-free group is an orderable group, thus we could ask:

Question (A. I. Kokorin, problem 2.24 of The Kourovka Notebook)

Is every torsion-free k-Engel group an orderable group?

Question

Is every torsion-free k-Engel group nilpotent?
Theorem (A)

[Y. K. Kim, A. H. Rhemtulla, 1995] An orderable k-Engel group is nilpotent of class $\leq f(k)$.

It is very easy to see that an orderable group is always torsion-free and, as noticed before, every nilpotent torsion-free group is an orderable group, thus we could ask:

Question (A. I. Kokorin, problem 2.24 of The Kourovka Notebook)

Is every torsion-free k-Engel group an orderable group?

Question

Is every torsion-free k-Engel group nilpotent?
Theorem (A)

[Y. K. Kim, A. H. Rhemtulla, 1995] An orderable k-Engel group is nilpotent of class $\leq f(k)$.

It is very easy to see that an orderable group is always torsion-free and, as noticed before, every nilpotent torsion-free group is an orderable group, thus we could ask:

Question (A. I. Kokorin, problem 2.24 of The Kourovka Notebook)

Is every torsion-free k-Engel group an orderable group?

Question

Is every torsion-free k-Engel group nilpotent?
Theorem (A)

[Y. K. Kim, A. H. Rhemtulla, 1995] An orderable k-Engel group is nilpotent of class $\leq f(k)$.

It is very easy to see that an orderable group is always torsion-free and, as noticed before, every nilpotent torsion-free group is an orderable group, thus we could ask:

Question (A. I. Kokorin, problem 2.24 of The Kourovka Notebook)

Is every torsion-free k-Engel group an orderable group?

Question

Is every torsion-free k-Engel group nilpotent?
Theorem (A)

[Y. K. Kim, A. H. Rhemtulla, 1995] An orderable k-Engel group is nilpotent of class $\leq f(k)$.

It is very easy to see that an orderable group is always torsion-free and, as noticed before, every nilpotent torsion-free group is an orderable group, thus we could ask:

Question (A. I. Kokorin, problem 2.24 of The Kourovka Notebook)

Is every torsion-free k-Engel group an orderable group?

Question

Is every torsion-free k-Engel group nilpotent?
Theorem (A)

[Y. K. Kim, A. H. Rhemtulla, 1995] An orderable k-Engel group is nilpotent of class $\leq f(k)$.

It is very easy to see that an orderable group is always torsion-free and, as noticed before, every nilpotent torsion-free group is an orderable group, thus we could ask:

Question (A. I. Kokorin, problem 2.24 of The Kourovka Notebook)

Is every torsion-free k-Engel group an orderable group?

Question

Is every torsion-free k-Engel group nilpotent?
Lemma (1)

Let G be a k-Engel group, then the subgroup $\langle x \rangle \langle y \rangle$ can be generated by k elements, for any $x, y \in G$.

Lemma (2)

Let G be a finitely generated k-Engel group. If H is normal in G and G/H is cyclic then H is finitely generated.
Lemma (1)

Let G be a k-Engel group, then the subgroup $\langle x \rangle \langle y \rangle$ can be generated by k elements, for any $x, y \in G$.

Lemma (2)

Let G be a finitely generated k-Engel group. If H is normal in G and G/H is cyclic then H is finitely generated.
A subgroup C of an ordered group is \textit{convex} if $x \in C$, whenever $1 \leq x \leq c$ with $c \in C$.

A \textit{relatively convex} subgroup of an O-group G is a subgroup convex under some order on G.

The quotient G/N of an O-group G is an O-group if and only if N is relatively convex.

If C, D are convex subgroups of an ordered group G, $C < D$ and there is not a convex subgroup H of G such hat $C < H < D$, we say that $C \mapsto D$ is a \textit{convex jump} in G.
A subgroup C of an ordered group is \textit{convex} if $x \in C$, whenever $1 \leq x \leq c$ with $c \in C$.

A \textit{relatively convex} subgroup of an O-group G is a subgroup convex under some order on G.

The quotient G/N of an O-group G is an O-group if and only if N is relatively convex.

If C, D are convex subgroups of an ordered group G, $C < D$ and there is not a convex subgroup H of G such hat $C < H < D$, we say that $C \mapsto D$ is a \textit{convex jump} in G.
A subgroup C of an ordered group is *convex* if $x \in C$, whenever $1 \leq x \leq c$ with $c \in C$.

A *relatively convex* subgroup of an O-group G is a subgroup convex under some order on G.

The quotient G/N of an O-group G is an O-group if and only if N is relatively convex.

If C, D are convex subgroups of an ordered group G, $C < D$ and there is not a convex subgroup H of G such hat $C < H < D$, we say that $C \mapsto D$ is a *convex jump in* G.
A subgroup C of an ordered group is *convex* if $x \in C$, whenever $1 \leq x \leq c$ with $c \in C$.

A *relatively convex* subgroup of an O-group G is a subgroup convex under some order on G.

The quotient G/N of an O-group G is an O-group if and only if N is relatively convex.

If C, D are convex subgroups of an ordered group G, $C < D$ and there is not a convex subgroup H of G such hat $C < H < D$, we say that $C \mapsto D$ is a *convex jump* in G.
Lemma (3)

A convex subgroup of an ordered k-Engel group (G, \leq) is normal in G.

Proof.

- Let C be a convex subgroup of G, $g \in G$.
- The subgroup $g^{-1}Cg$ is also convex. For:
 \[1 \leq a \leq g^{-1}bg, \ b \in C \implies 1 \leq gag^{-1} \leq b \in C \implies gag^{-1} \in C \implies a \in g^{-1}Cg.\]
- Either $g^{-1}Cg \subseteq C$ or $C \subseteq g^{-1}Cg$.
 Assume w.l.o.g. $C \subseteq g^{-1}Cg$. Then $C \subseteq g^{-i}Cg^i$, for any $i > 0$ and $g^{-i}Cg^i \subseteq C$, for any $i < 0$.
- Assume $C \subseteq g^{-1}Cg$ and let $c \in C$ such that $g^{-1}cg \notin C$.
- By Lemma 1, $< c > < g > \subseteq g^{-s}Cg^s$, for some $s > 0$.
- Therefore $g^{-(s+1)}cg^{s+1} \in g^{-s}Cg^s$, from which $g^{-1}cg \in C$, a contradiction.
Lemma (3)

A convex subgroup of an ordered k-Engel group (G, \leq) is normal in G.

Proof.

- Let C be a convex subgroup of G, $g \in G$.
 - The subgroup $g^{-1}Cg$ is also convex. For:
 \[1 \leq a \leq g^{-1}bg, \quad b \in C \implies 1 \leq gag^{-1} \leq b \in C \implies gag^{-1} \in C \implies a \in g^{-1}Cg. \]
 - Either $g^{-1}Cg \subseteq C$ or $C \subseteq g^{-1}Cg$.
 Assume w.l.o.g. $C \subseteq g^{-1}Cg$. Then $C \subseteq g^{-i}Cg^i$, for any $i > 0$ and $g^{-i}Cg^i \subseteq C$, for any $i < 0$.
 - Assume $C \subset g^{-1}Cg$ and let $c \in C$ such that $g^{-1}cg \notin C$.
 - By Lemma 1, $<c><g> \subseteq g^{-s}Cg^s$, for some $s > 0$.
 - Therefore $g^{-(s+1)}cg^{s+1} \in g^{-s}Cg^s$, from which $g^{-1}cg \in C$, a contradiction.
Lemma (3)

A convex subgroup of an ordered k-Engel group (G, \leq) is normal in G.

Proof.

- Let C be a convex subgroup of G, $g \in G$.
- The subgroup $g^{-1}Cg$ is also convex. For:
 $1 \leq a \leq g^{-1}bg, b \in C \implies 1 \leq gag^{-1} \leq b \in C \implies gag^{-1} \in C \implies a \in g^{-1}Cg$.
- Either $g^{-1}Cg \subseteq C$ or $C \subseteq g^{-1}Cg$.
 Assume w.l.o.g. $C \subseteq g^{-1}Cg$. Then $C \subseteq g^{-i}Cg^i$, for any $i > 0$ and $g^{-i}Cg^i \subseteq C$, for any $i < 0$.
- Assume $C \subseteq g^{-1}Cg$ and let $c \in C$ such that $g^{-1}cg \notin C$.
- By Lemma 1, $< c > <g> \subseteq g^{-s}Cg^s$, for some $s > 0$.
- Therefore $g^{-(s+1)}cg^{s+1} \in g^{-s}Cg^s$, from which $g^{-1}cg \in C$, a contradiction.
Lemma (3)

A convex subgroup of an ordered k-Engel group (G, \leq) is normal in G.

Proof.

- Let C be a convex subgroup of G, $g \in G$.

- The subgroup $g^{-1}Cg$ is also convex. For:
 \begin{align*}
 1 \leq a \leq g^{-1}bg, \ b \in C \implies 1 \leq gag^{-1} \leq b \in C \implies gag^{-1} \in C \implies a \in g^{-1}Cg.
 \end{align*}

- Either $g^{-1}Cg \subseteq C$ or $C \subseteq g^{-1}Cg$.
 Assume w.l.o.g. $C \subseteq g^{-1}Cg$. Then $C \subseteq g^{-i}Cg^i$, for any $i > 0$ and $g^{-i}Cg^i \subseteq C$, for any $i < 0$.

- Assume $C \subset g^{-1}Cg$ and let $c \in C$ such that $g^{-1}cg \notin C$.

- By Lemma 1, $\langle c \rangle < g^s \subseteq g^{-s}Cg^s$, for some $s > 0$.

- Therefore $g^{-(s+1)}cg^{s+1} \in g^{-s}Cg^s$, from which $g^{-1}cg \in C$, a contradiction.
Lemma (3)

A convex subgroup of an ordered k-Engel group (G, \leq) is normal in G.

Proof.

- Let C be a convex subgroup of G, $g \in G$.

- The subgroup $g^{-1}Cg$ is also convex. For:

 $1 \leq a \leq g^{-1}bg$, $b \in C \implies 1 \leq gag^{-1} \leq b \in C \implies gag^{-1} \in C \implies a \in g^{-1}Cg$.

- Either $g^{-1}Cg \subseteq C$ or $C \subseteq g^{-1}Cg$.

 Assume w.l.o.g. $C \subseteq g^{-1}Cg$. Then $C \subseteq g^{-i}Cg^i$, for any $i > 0$ and $g^{-i}Cg^i \subseteq C$, for any $i < 0$.

- Assume $C \subset g^{-1}Cg$ and let $c \in C$ such that $g^{-1}cg \notin C$.

- By Lemma 1, $\langle c \rangle < g \rangle \subseteq g^{-s}Cg^s$, for some $s > 0$.

- Therefore $g^{-(s+1)}cg^{s+1} \in g^{-s}Cg^s$, from which $g^{-1}cg \in C$, a contradiction.
Lemma (3)

A convex subgroup of an ordered k-Engel group (G, \leq) is normal in G.

Proof.

- Let C be a convex subgroup of G, $g \in G$.
- The subgroup $g^{-1}Cg$ is also convex. For:

 \[1 \leq a \leq g^{-1}bg, \quad b \in C \implies 1 \leq gag^{-1} \leq b \in C \implies gag^{-1} \in C \implies a \in g^{-1}Cg. \]
- Either $g^{-1}Cg \subseteq C$ or $C \subseteq g^{-1}Cg$.

 Assume w.l.o.g. $C \subseteq g^{-1}Cg$. Then $C \subseteq g^{-i}Cg^i$, for any $i > 0$ and $g^{-i}Cg^i \subseteq C$, for any $i < 0$.
- Assume $C \subseteq g^{-1}Cg$ and let $c \in C$ such that $g^{-1}cg \notin C$.
- By Lemma 1, $\langle c \rangle \langle g \rangle \subseteq g^{-s}Cg^s$, for some $s > 0$.
- Therefore $g^{-(s+1)}cg^{s+1} \in g^{-s}Cg^s$, from which $g^{-1}cg \in C$, a contradiction.
Lemma (3)

A convex subgroup of an ordered k-Engel group (G, \leq) is normal in G.

Proof.

- Let C be a convex subgroup of G, $g \in G$.

- The subgroup $g^{-1}Cg$ is also convex. For:

 $1 \leq a \leq g^{-1}bg, b \in C \implies 1 \leq gag^{-1} \leq b \in C \implies gag^{-1} \in C \implies a \in g^{-1}Cg$.

- Either $g^{-1}Cg \subseteq C$ or $C \subseteq g^{-1}Cg$.

 Assume w.l.o.g. $C \subseteq g^{-1}Cg$. Then $C \subseteq g^{-i}Cg^i$, for any $i > 0$ and $g^{-i}Cg^i \subseteq C$, for any $i < 0$.

- Assume $C \subset g^{-1}Cg$ and let $c \in C$ such that $g^{-1}cg \notin C$.

- By Lemma 1, $< c > < g > \subseteq g^{-s}Cg^s$, for some $s > 0$.

- Therefore $g^{-(s+1)}cg^{s+1} \in g^{-s}Cg^s$, from which $g^{-1}cg \in C$, a contradiction.
Lemma (3)

A convex subgroup of an ordered k-Engel group (G, \leq) is normal in G.

Proof.

- Let C be a convex subgroup of G, $g \in G$.
- The subgroup $g^{-1}Cg$ is also convex. For:
 \[
 1 \leq a \leq g^{-1}bg, b \in C \implies 1 \leq gag^{-1} \leq b \in C \implies gag^{-1} \in C \implies a \in g^{-1}Cg.
 \]
- Either $g^{-1}Cg \subseteq C$ or $C \subseteq g^{-1}Cg$.
 Assume w.l.o.g. $C \subseteq g^{-1}Cg$. Then $C \subseteq g^{-i}Cg^{i}$, for any $i > 0$ and $g^{-i}Cg^{i} \subseteq C$, for any $i < 0$.
- Assume $C \subseteq g^{-1}Cg$ and let $c \in C$ such that $g^{-1}cg \notin C$.
- By Lemma 1, $\langle c \rangle \langle g \rangle \subseteq g^{-s}Cg^{s}$, for some $s > 0$.
- Therefore $g^{-(s+1)}cg^{s+1} \in g^{-s}Cg^{s}$, from which $g^{-1}cg \in C$, a contradiction.
Lemma (3)

A convex subgroup of an ordered k-Engel group (G, \leq) is normal in G.

Proof.

- Let C be a convex subgroup of G, $g \in G$.
- The subgroup $g^{-1}Cg$ is also convex. For:
 \[1 \leq a \leq g^{-1}bg, \ b \in C \implies 1 \leq gag^{-1} \leq b \in C \implies gag^{-1} \in C \implies a \in g^{-1}Cg. \]
- Either $g^{-1}Cg \subseteq C$ or $C \subseteq g^{-1}Cg$.
 Assume w.l.o.g. $C \subseteq g^{-1}Cg$. Then $C \subseteq g^{-i}Cg^i$, for any $i > 0$ and $g^{-i}Cg^i \subseteq C$, for any $i < 0$.
- Assume $C \subseteq g^{-1}Cg$ and let $c \in C$ such that $g^{-1}cg \notin C$.
- By Lemma 1, $\langle c \rangle \langle g \rangle \subseteq g^{-s}Cg^s$, for some $s > 0$.
- Therefore $g^{-(s+1)}cg^{s+1} \in g^{-s}Cg^s$, from which $g^{-1}cg \in C$, a contradiction.
Lemma (3)

A convex subgroup of an ordered k-Engel group \((G, \leq)\) is normal in \(G\).

Proof.

- Let \(C\) be a convex subgroup of \(G, g \in G\).

- The subgroup \(g^{-1}Cg\) is also convex. For:

 \[1 \leq a \leq g^{-1}bg, b \in C \implies 1 \leq gag^{-1} \leq b \in C \implies gag^{-1} \in C \implies a \in g^{-1}Cg.\]

- Either \(g^{-1}Cg \subseteq C\) or \(C \subseteq g^{-1}Cg\).
 Assume w.l.o.g. \(C \subseteq g^{-1}Cg\). Then \(C \subseteq g^{-i}Cg^i\), for any \(i > 0\) and \(g^{-i}Cg^i \subseteq C\), for any \(i < 0\).

- Assume \(C \subset g^{-1}Cg\) and let \(c \in C\) such that \(g^{-1}cg \notin C\).

- By Lemma 1, \(<c><g> \subseteq g^{-s}Cg^s\), for some \(s > 0\).

- Therefore \(g^{-(s+1)}cg^{s+1} \in g^{-s}Cg^s\), from which \(g^{-1}cg \in C\), a contradiction.
Lemma (3)

A convex subgroup of an ordered \(k \)-Engel group \((G, \leq)\) is normal in \(G \).

Proof.

- Let \(C \) be a convex subgroup of \(G \), \(g \in G \).
- The subgroup \(g^{-1} Cg \) is also convex. For:
 \(1 \leq a \leq g^{-1}bg, \ b \in C \implies 1 \leq gag^{-1} \leq b \in C \implies gag^{-1} \in C \implies a \in g^{-1} Cg \).
- Either \(g^{-1} Cg \subseteq C \) or \(C \subseteq g^{-1} Cg \).
 Assume w.l.o.g. \(C \subseteq g^{-1} Cg \). Then \(C \subseteq g^{-i} Cg^i \), for any \(i > 0 \) and \(g^{-i} Cg^i \subseteq C \), for any \(i < 0 \).
- Assume \(C \subseteq g^{-1} Cg \) and let \(c \in C \) such that \(g^{-1}cg \notin C \).
- By Lemma 1, \(< c > < g > \subseteq g^{-s} Cg^s \), for some \(s > 0 \).
- Therefore \(g^{-(s+1)} Cg^{s+1} \in g^{-s} Cg^s \), from which \(g^{-1}cg \in C \), a contradiction.
Lemma (3)

A convex subgroup of an ordered k-Engel group \((G, \leq)\) is normal in \(G\).

Proof.

- Let \(C\) be a convex subgroup of \(G\), \(g \in G\).
- The subgroup \(g^{-1}Cg\) is also convex. For:
 \[1 \leq a \leq g^{-1}bg, \, b \in C \implies 1 \leq gag^{-1} \leq b \in C \implies gag^{-1} \in C \implies a \in g^{-1}Cg.\]
- Either \(g^{-1}Cg \subseteq C\) or \(C \subseteq g^{-1}Cg\).
 Assume w.l.o.g. \(C \subseteq g^{-1}Cg\). Then \(C \subseteq g^{-i}Cg^i\), for any \(i > 0\) and \(g^{-i}Cg^i \subseteq C\), for any \(i < 0\).
- Assume \(C \subset g^{-1}Cg\) and let \(c \in C\) such that \(g^{-1}cg \notin C\).
 - By Lemma 1, \(\langle c \rangle \langle g \rangle \subseteq g^{-s}Cg^s\), for some \(s > 0\).
 - Therefore \(g^{-(s+1)}cg^{s+1} \in g^{-s}Cg^s\), from which \(g^{-1}cg \in C\), a contradiction.
Lemma (3)

A convex subgroup of an ordered k-Engel group (G, \leq) is normal in G.

Proof.

- Let C be a convex subgroup of G, $g \in G$.
- The subgroup $g^{-1}Cg$ is also convex. For:

 \[1 \leq a \leq g^{-1}bg, \quad b \in C \implies 1 \leq gag^{-1} \leq b \in C \implies gag^{-1} \in C \implies a \in g^{-1}Cg. \]
- Either $g^{-1}Cg \subseteq C$ or $C \subseteq g^{-1}Cg$.
 - Assume w.l.o.g. $C \subseteq g^{-1}Cg$. Then $C \subseteq g^{-i}Cg^i$, for any $i > 0$ and $g^{-i}Cg^i \subseteq C$, for any $i < 0$.
- Assume $C \subset g^{-1}Cg$ and let $c \in C$ such that $g^{-1}cg \notin C$.
- By Lemma 1, $\langle c \rangle^{<g>} \subseteq g^{-s}Cg^s$, for some $s > 0$.
- Therefore $g^{-(s+1)}cg^{s+1} \in g^{-s}Cg^s$, from which $g^{-1}cg \in C$, a contradiction.
Proof.

- Let C be a convex subgroup of G, $g \in G$.
- The subgroup $g^{-1}Cg$ is also convex. For:

 $1 \leq a \leq g^{-1}bg$, $b \in C \implies 1 \leq gag^{-1} \leq b \in C \implies gag^{-1} \in C \implies a \in g^{-1}Cg$.

- Either $g^{-1}Cg \subseteq C$ or $C \subseteq g^{-1}Cg$.
 Assume w.l.o.g. $C \subseteq g^{-1}Cg$. Then $C \subseteq g^{-i}Cg^i$, for any $i > 0$ and $g^{-i}Cg^i \subseteq C$, for any $i < 0$.

- Assume $C \subset g^{-1}Cg$ and let $c \in C$ such that $g^{-1}cg \notin C$.
- By Lemma 1, $\langle c \rangle^{<g>} \subseteq g^{-s}Cg^s$, for some $s > 0$.
- Therefore $g^{-(s+1)}cg^{s+1} \in g^{-s}Cg^s$, from which $g^{-1}cg \in C$, a contradiction.
Proof of Theorem A

- (G, \leq) an ordered k-Engel group. Then G is torsion-free.
- May assume G finitely generated, by a result of Zel’manov.
- Let $K := \bigcap\{C \triangleleft G \mid C \text{ convex}, G/C \text{ nilpotent}\}$.
- G/K is residually-(torsion-free nilpotent), thus it is nilpotent of class bounded by a function of k, by Zel’manov’s result.
- If $K = \{1\}$, we have the result. Assume $K \neq \{1\}$.
- K is finitely generated, by Lemma 2. Then there exists a maximal convex subgroup $D \subset K$.
- Then $D \triangleleft G$, by Lemma 3. Moreover $D \hookrightarrow K$ is a jump, therefore K/D is abelian and torsion-free.
- Then G/D is soluble and k-Engel, hence it is nilpotent, and torsion-free, thus $K \subseteq D$, a contradiction.
Proof of Theorem A

- \((G, \leq)\) an ordered \(k\)-Engel group. Then \(G\) is torsion-free.
- May assume \(G\) finitely generated, by a result of Zel’manov.
- Let \(K := \bigcap\{C \trianglelefteq G \mid C \text{ convex, } G/C \text{ nilpotent}\}\).
- \(G/K\) is residually-(torsion-free nilpotent), thus it is nilpotent of class bounded by a function of \(k\), by Zel’manov’s result.
- If \(K = \{1\}\), we have the result. Assume \(K \neq \{1\}\).
- \(K\) is finitely generated, by Lemma 2. Then there exists a maximal convex subgroup \(D \trianglelefteq K\).
- Then \(D \trianglelefteq G\), by Lemma 3. Moreover \(D \rightarrowtail K\) is a jump, therefore \(K/D\) is abelian and torsion-free.
- Then \(G/D\) is soluble and \(k\)-Engel, hence it is nilpotent, and torsion-free, thus \(K \subseteq D\), a contradiction.
Proof of Theorem A

- (G, \leq) an ordered k-Engel group. Then G is torsion-free.
- May assume G finitely generated, by a result of Zel’manov.
- Let $K := \bigcap \{C \trianglelefteq G \mid C$ convex, G/C nilpotent\}.
- G/K is residually-(torsion-free nilpotent), thus it is nilpotent of class bounded by a function of k, by Zel’manov’s result.
- If $K = \{1\}$, we have the result. Assume $K \neq \{1\}$.
- K is finitely generated, by Lemma 2. Then there exists a maximal convex subgroup $D \subset K$.
- Then $D \trianglelefteq G$, by Lemma 3. Moreover $D \mapsto K$ is a jump, therefore K/D is abelian and torsion-free.
- Then G/D is soluble and k-Engel, hence it is nilpotent, and torsion-free, thus $K \subseteq D$, a contradiction.
Proof of Theorem A

- (G, \leq) an ordered k-Engel group. Then G is torsion-free.
- May assume G finitely generated, by a result of Zel’manov.
- Let $K := \bigcap \{C \triangleleft G \mid C \text{ convex, } G/C \text{ nilpotent}\}$.
- G/K is residually-(torsion-free nilpotent), thus it is nilpotent of class bounded by a function of k, by Zel’manov’s result.
- If $K = \{1\}$, we have the result. Assume $K \neq \{1\}$.
- K is finitely generated, by Lemma 2. Then there exists a maximal convex subgroup $D \subset K$.
- Then $D \vartriangleleft G$, by Lemma 3. Moreover $D \hookrightarrow K$ is a jump, therefore K/D is abelian and torsion-free.
- Then G/D is soluble and k-Engel, hence it is nilpotent, and torsion-free, thus $K \subseteq D$, a contradiction.
Proof of Theorem A

- \((G, \leq)\) an ordered \(k\)-Engel group. Then \(G\) is torsion-free.
- May assume \(G\) finitely generated, by a result of Zel’manov.
- Let \(K := \bigcap\{C \triangleleft G \mid C\) convex, \(G/C\) nilpotent\}\).
- \(G/K\) is residually-(torsion-free nilpotent), thus it is nilpotent of class bounded by a function of \(k\), by Zel’manov’s result.
- If \(K = \{1\}\), we have the result. Assume \(K \neq \{1\}\).
- \(K\) is finitely generated, by Lemma 2. Then there exists a maximal convex subgroup \(D \subset K\).
- Then \(D \triangleleft G\), by Lemma 3. Moreover \(D \mapsto K\) is a jump, therefore \(K/D\) is abelian and torsion-free.
- Then \(G/D\) is soluble and \(k\)-Engel, hence it is nilpotent, and torsion-free, thus \(K \subset D\), a contradiction.
Proof of Theorem A

- (G, \leq) an ordered k-Engel group. Then G is torsion-free.
- May assume G finitely generated, by a result of Zel’manov.
- Let $K := \bigcap\{C \triangleleft G \mid C$ convex, G/C nilpotent\}.
- G/K is residually-(torsion-free nilpotent), thus it is nilpotent of class bounded by a function of k, by Zel’manov’s result.
- If $K = \{1\}$, we have the result. Assume $K \neq \{1\}$.
- K is finitely generated, by Lemma 2. Then there exists a maximal convex subgroup $D \subset K$.
- Then $D \triangleleft G$, by Lemma 3. Moreover $D \hookrightarrow K$ is a jump, therefore K/D is abelian and torsion-free.
- Then G/D is soluble and k-Engel, hence it is nilpotent, and torsion-free, thus $K \subseteq D$, a contradiction.
Proof of Theorem A

- \((G, \leq)\) an ordered \(k\)-Engel group. Then \(G\) is torsion-free.
- May assume \(G\) finitely generated, by a result of Zel’manov.
- Let \(K := \bigcap\{C \triangleleft G \mid C\) convex, \(G/C\) nilpotent\}\).
- \(G/K\) is residually-(torsion-free nilpotent), thus it is nilpotent of class bounded by a function of \(k\), by Zel’manov’s result.
- If \(K = \{1\}\), we have the result. Assume \(K \neq \{1\}\).
 - \(K\) is finitely generated, by Lemma 2. Then there exists a maximal convex subgroup \(D \subset K\).
 - Then \(D \triangleleft G\), by Lemma 3. Moreover \(D \mapsto K\) is a jump, therefore \(K/D\) is abelian and torsion-free.
 - Then \(G/D\) is soluble and \(k\)-Engel, hence it is nilpotent, and torsion-free, thus \(K \subseteq D\), a contradiction.
Proof of Theorem A

- \((G, \leq)\) an ordered \(k\)-Engel group. Then \(G\) is torsion-free.
- May assume \(G\) finitely generated, by a result of Zel’manov.
- Let \(K := \bigcap\{C \trianglelefteq G \mid C\) convex, \(G/C\) nilpotent\}\).
- \(G/K\) is residually-(torsion-free nilpotent), thus it is nilpotent of class bounded by a function of \(k\), by Zel’manov’s result.
- If \(K = \{1\}\), we have the result. Assume \(K \neq \{1\}\).
- \(K\) is finitely generated, by Lemma 2. Then there exists a maximal convex subgroup \(D \subset K\).
- Then \(D \trianglelefteq G\), by Lemma 3. Moreover \(D \mapsto K\) is a jump, therefore \(K/D\) is abelian and torsion-free.
- Then \(G/D\) is soluble and \(k\)-Engel, hence it is nilpotent, and torsion-free, thus \(K \subset D\), a contradiction.
Proof of Theorem A

- \((G, \leq)\) an ordered \(k\)-Engel group. Then \(G\) is torsion-free.
- May assume \(G\) finitely generated, by a result of Zel’manov.
- Let \(K := \bigcap\{C \trianglelefteq G \mid C\) convex, \(G/C\) nilpotent\}.
- \(G/K\) is residually-(torsion-free nilpotent), thus it is nilpotent of class bounded by a function of \(k\), by Zel’manov’s result.
- If \(K = \{1\}\), we have the result. Assume \(K \neq \{1\}\).
- \(K\) is finitely generated, by Lemma 2. Then there exists a maximal convex subgroup \(D \subset K\).
- Then \(D \trianglelefteq G\), by Lemma 3. Moreover \(D \hookrightarrow K\) is a jump, therefore \(K/D\) is abelian and torsion-free.
- Then \(G/D\) is soluble and \(k\)-Engel, hence it is nilpotent, and torsion-free, thus \(K \subseteq D\), a contradiction.
Proof of Theorem A

- \((G, \leq)\) an ordered \(k\)-Engel group. Then \(G\) is torsion-free.
- May assume \(G\) finitely generated, by a result of Zel’manov.
- Let \(K := \bigcap\{C \trianglelefteq G \mid C\text{ convex, } G/C\text{ nilpotent}\}\).
- \(G/K\) is residually-(torsion-free nilpotent), thus it is nilpotent of class bounded by a function of \(k\), by Zel’manov’s result.
- If \(K = \{1\}\), we have the result. Assume \(K \neq \{1\}\).
- \(K\) is finitely generated, by Lemma 2. Then there exists a maximal convex subgroup \(D \subset K\).
- Then \(D \trianglelefteq G\), by Lemma 3. Moreover \(D \mapsto K\) is a jump, therefore \(K/D\) is abelian and torsion-free.
- Then \(G/D\) is soluble and \(k\)-Engel, hence it is nilpotent, and torsion-free, thus \(K \subseteq D\), a contradiction.
A partially ordered group \((G, \leq)\) is called a \textit{lattice ordered group} if the ordered set \((G, \leq)\) is a lattice. A group is called a \textit{lattice orderable group} (an \textit{l-group}) if there exists an ordered \(\leq\) in \(G\) such that \((G, \leq)\) is a lattice ordered group.

Obviously an orderable group is an \(l\)-group. In 1988 N. Ya Medvedev proved the following

\begin{center}
\textbf{Theorem}

\textit{Every k-Engel l-group is residually orderable.}
\end{center}

From that it follows easily

\begin{center}
\textbf{Theorem}

\textit{Every k-Engel lattice orderable group is nilpotent of class bounded by a function of \(k\).}
\end{center}
A partially ordered group \((G, \leq)\) is called a *lattice ordered group* if the ordered set \((G, \leq)\) is a lattice. A group is called a *lattice orderable group* (an *l-group*) if there exists an ordered \(\leq\) in \(G\) such that \((G, \leq)\) is a lattice ordered group.

Obviously an orderable group is an \(l\)-group. In 1988 N. Ya Medvedev proved the following

Theorem

Every k-Engel l-group is residually orderable.

From that it follows easily

Theorem

Every k-Engel lattice orderable group is nilpotent of class bounded by a function of \(k\).
A partially ordered group \((G, \leq)\) is called a **lattice ordered group** if the ordered set \((G, \leq)\) is a lattice. A group is called a **lattice orderable group** (an *l-group*) if there exists an ordered \(\leq\) in \(G\) such that \((G, \leq)\) is a lattice ordered group.

Obviously an orderable group is an *l-group*. In 1988 N. Ya Medvedev proved the following

Theorem

Every k-Engel l-group is residually orderable.

From that it follows easily

Theorem

Every k-Engel lattice orderable group is nilpotent of class bounded by a function of \(k\).
A partially ordered group \((G, \leq)\) is called a \textit{lattice ordered group} if the ordered set \((G, \leq)\) is a lattice. A group is called a \textit{lattice orderable group} (an \textit{l-group}) if there exists an ordered \(\leq\) in \(G\) such that \((G, \leq)\) is a lattice ordered group. Obviously an orderable group is an \textit{l-group}. In 1988 N. Ya Medvedev proved the following

Theorem

\textit{Every \(k\)-Engel \(l\)-group is residually orderable.}

From that it follows easily

Theorem

\textit{Every \(k\)-Engel lattice orderable group is nilpotent of class bounded by a function of \(k\).}
A partially ordered group \((G, \leq)\) is called a **lattice ordered group** if the ordered set \((G, \leq)\) is a lattice. A group is called a **lattice orderable group** (an **l-group**) if there exists an ordered \(\leq\) in \(G\) such that \((G, \leq)\) is a lattice ordered group.

Obviously an orderable group is an l-group. In 1988 N. Ya Medvedev proved the following

Theorem

Every k-Engel l-group is residually orderable.

From that it follows easily

Theorem

Every k-Engel lattice orderable group is nilpotent of class bounded by a function of \(k\).
If \leq is a partial order in G, then (G, \leq) is called a **partially right-ordered group** if,

$$x \leq y \implies xb \leq yb, \forall x, y, b \in G.$$

If (G, \leq) is a partially right-ordered group and the order \leq is a total order in G, we say that (G, \leq) is a **right-ordered group**.

G is called a **right-orderable group** (an RO-group) if there exists a total order \leq such that (G, \leq) is a right-ordered group.

Obviously an O-group is an RO-group and it is possible to prove that any lattice-orderable group is a subgroup of a right-orderable group. So is natural to ask:

Question

Is every RO k-Engel group nilpotent?

If G is an RO k-Engel group, in order to show that G is nilpotent it would be sufficient to prove that G is locally indicable, i.e. every non trivial finitely generated subgroup of G has an infinite cyclic factor group.

Question

Is every RO k-Engel group locally indicable?
If \(\leq \) is a partial order in \(G \), then \((G, \leq)\) is called a \textit{partially right-ordered group} if,

\[
x \leq y \implies xb \leq yb, \forall x, y, b \in G.
\]

If \((G, \leq)\) is a partially right-ordered group and the order \(\leq \) is a total order in \(G \), we say that \((G, \leq)\) is a \textit{right-ordered group}.

\(G \) is called a \textit{right-orderable group} (\textit{an RO-group}) if there exists a total order \(\leq \) such that \((G, \leq)\) is a right-ordered group.

Obviously an O-group is an RO-group and it is possible to prove that any lattice-orderable group is a subgroup of a right-orderable group. So is natural to ask:

\textbf{Question}

Is every RO \(k \)-Engel group nilpotent?

If \(G \) is an RO \(k \)-Engel group, in order to show that \(G \) is nilpotent it would be sufficient to prove that \(G \) is locally indicable, i.e. every non trivial finitely generated subgroup of \(G \) has an infinite cyclic factor group.

\textbf{Question}

Is every RO \(k \)-Engel group locally indicable?
If \(\leq \) is a partial order in \(G \), then \((G, \leq)\) is called a \textit{partially right-ordered group} if,

\[x \leq y \implies xb \leq yb, \forall x, y, b \in G. \]

If \((G, \leq)\) is a partially right-ordered group and the order \(\leq\) is a total order in \(G \), we say that \((G, \leq)\) is a \textit{right-ordered group}.

\(G \) is called a \textit{right-orderable group} (an \textit{RO-group}) if there exists a total order \(\leq \) such that \((G, \leq)\) is a right-ordered group.

Obviously an O-group is an RO-group and it is possible to prove that any lattice-orderable group is a subgroup of a right-orderable group. So is natural to ask:

Question

Is every RO \(k \)-Engel group nilpotent?

If \(G \) is an RO \(k \)-Engel group, in order to show that \(G \) is nilpotent it would be sufficient to prove that \(G \) is locally indicable, i.e. every non trivial finitely generated subgroup of \(G \) has an infinite cyclic factor group.

Question

Is every RO \(k \)-Engel group locally indicable?
If \leq is a partial order in G, then (G, \leq) is called a partially right-ordered group if,

$$x \leq y \implies xb \leq yb, \forall x, y, b \in G.$$

If (G, \leq) is a partially right-ordered group and the order \leq is a total order in G, we say that (G, \leq) is a right-ordered group.

G is called a right-orderable group (an RO-group) if there exists a total order \leq such that (G, \leq) is a right-ordered group.

Obviously an O-group is an RO-group and it is possible to prove that any lattice-orderable group is a subgroup of a right-orderable group. So is natural to ask:

Question

Is every RO k-Engel group nilpotent?

If G is an RO k-Engel group, in order to show that G is nilpotent it would be sufficient to prove that G is locally indicable, i.e. every non trivial finitely generated subgroup of G has an infinite cyclic factor group.

Question

Is every RO k-Engel group locally indicable?
If \leq is a partial order in G, then (G, \leq) is called a partially right-ordered group if,

$$x \leq y \implies xb \leq yb, \forall x, y, b \in G.$$

If (G, \leq) is a partially right-ordered group and the order \leq is a total order in G, we say that (G, \leq) is a right-ordered group.

G is called a right-orderable group (an RO-group) if there exists a total order \leq such that (G, \leq) is a right-ordered group.

Obviously an O-group is an RO-group and it is possible to prove that any lattice-orderable group is a subgroup of a right-orderable group. So is natural to ask:

Question

Is every RO k-Engel group nilpotent?

If G is an RO k-Engel group, in order to show that G is nilpotent it would be sufficient to prove that G is locally indicable, i.e. every non trivial finitely generated subgroup of G has an infinite cyclic factor group.

Question

Is every RO k-Engel group locally indicable?
If \leq is a partial order in G, then (G, \leq) is called a **partially right-ordered group** if,

$$x \leq y \implies xb \leq yb, \forall x, y, b \in G.$$

If (G, \leq) is a partially right-ordered group and the order \leq is a total order in G, we say that (G, \leq) is a **right-ordered group**.

G is called a **right-orderable group** (an **RO-group**) if there exists a total order \leq such that (G, \leq) is a right-ordered group.

Obviously an O-group is an RO-group and it is possible to prove that any lattice-orderable group is a subgroup of a right-orderable group. So is natural to ask:

Question

Is every RO k-Engel group nilpotent?

If G is an RO k-Engel group, in order to show that G is nilpotent it would be sufficient to prove that G is locally indicable, i.e. every non trivial finitely generated subgroup of G has an infinite cyclic factor group.

Question

Is every RO k-Engel group locally indicable?
If \(\leq \) is a partial order in \(G \), then \((G, \leq)\) is called a \textit{partially right-ordered group} if,
\[
x \leq y \implies xb \leq yb, \forall x, y, b \in G.
\]
If \((G, \leq)\) is a partially right-ordered group and the order \(\leq \) is a total order in \(G \), we say that \((G, \leq)\) is a \textit{right-ordered group}.

\(G \) is called a \textit{right-orderable group} (an \textit{RO-group}) if there exists a total order \(\leq \) such that \((G, \leq)\) is a right-ordered group.

Obviously an O-group is an RO-group and it is possible to prove that any lattice-orderable group is a subgroup of a right-orderable group. So is natural to ask:

\begin{question}
Is every RO \(k \)-Engel group nilpotent?
\end{question}

If \(G \) is an RO \(k \)-Engel group, in order to show that \(G \) is nilpotent it would be sufficient to prove that \(G \) is locally indicable, i.e. every non trivial finitely generated subgroup of \(G \) has an infinite cyclic factor group.

\begin{question}
Is every RO \(k \)-Engel group locally indicable?
\end{question}
If \(\leq \) is a partial order in \(G \), then \((G, \leq)\) is called a \textit{partially right-ordered group} if,
\[
x \leq y \implies xb \leq yb, \forall x, y, b \in G.
\]
If \((G, \leq)\) is a partially right-ordered group and the order \(\leq \) is a total order in \(G \), we say that \((G, \leq)\) is a \textit{right-ordered group}.

\(G \) is called a \textit{right-orderable group} (an RO-group) if there exists a total order \(\leq \) such that \((G, \leq)\) is a right-ordered group.

Obviously an O-group is an RO-group and it is possible to prove that any lattice-orderable group is a subgroup of a right-orderable group. So is natural to ask:

Question

Is every RO \(k \)-Engel group nilpotent?

If \(G \) is an RO \(k \)-Engel group, in order to show that \(G \) is nilpotent it would be sufficient to prove that \(G \) is locally indicable, i.e. every non trivial finitely generated subgroup of \(G \) has an infinite cyclic factor group.

Question

Is every RO \(k \)-Engel group locally indicable?
A right partial order on the group G is said to be archimedean if, for any $a, b \in G, a > 1, b > 1$, there exists a positive integer n such that $b < a^n$. By a result of Hölder an order on G is archimedean if and only if G is order-isomorphic to a subgroup of the additive group of the real numbers under the natural order.

A right order on a group G is a **Conrad order** if $C \trianglelefteq D$ and D/C is archimedean for every convex jump $C \hookrightarrow D$.

Theorem (Conrad)

A group is locally indicable if and only if it has a right Conrad order.

Theorem

Every Conrad right-ordered k-Engel group is nilpotent of class bounded by a function of k.
A right partial order on the group G is said to be *archimedean* if, for any $a, b \in G, a > 1, b > 1$, there exists a positive integer n such that $b < a^n$. By a result of Hölder an order on G is archimedean if and only if G is order-isomorphism to a subgroup of the additive group of the real numbers under the natural order.

A right order on a group G is a *Conrad order* if $C \triangleleft D$ and D/C is archimedean for every convex jump $C \rightharpoonup D$.

Theorem (Conrad)

A group is locally indicable if and only if it has a right Conrad order.

Theorem

Every Conrad right-ordered k-Engel group is nilpotent of class bounded by a function of k.
A right partial order on the group G is said to be archimedean if, for any $a, b \in G, a > 1, b > 1$, there exists a positive integer n such that $b < a^n$. By a result of Hölder an order on G is archimedean if and only if G is order-isomorphic to a subgroup of the additive group of the real numbers under the natural order.

A right order on a group G is a Conrad order if $C \trianglelefteq D$ and D/C is archimedean for every convex jump $C \hookrightarrow D$.

Theorem (Conrad)

A group is locally indicable if and only if it has a right Conrad order.

Theorem

Every Conrad right-ordered k-Engel group is nilpotent of class bounded by a function of k.
A right partial order on the group G is said to be archimedean if, for any $a, b \in G, a > 1, b > 1$, there exists a positive integer n such that $b < a^n$. By a result of Hölder an order on G is archimedean if and only if G is order-isomorphic to a subgroup of the additive group of the real numbers under the natural order.

A right order on a group G is a **Conrad order** if $C \subseteq D$ and D/C is archimedean for every convex jump $C \hookrightarrow D$.

Theorem (Conrad)

A group is locally indicable if and only if it has a right Conrad order.

Theorem

Every Conrad right-ordered k-Engel group is nilpotent of class bounded by a function of k.
A right partial order on the group G is said to be **archimedean** if, for any $a, b \in G, a > 1, b > 1$, there exists a positive integer n such that $b < a^n$. By a result of Hölder an order on G is archimedean if and only if G is order-isomorphic to a subgroup of the additive group of the real numbers under the natural order.

A right order on a group G is a **Conrad order** if $C \triangleleft D$ and D/C is archimedean for every convex jump $C \hookrightarrow D$.

Theorem (Conrad)

A group is locally indicable if and only if it has a right Conrad order.

Theorem

Every Conrad right-ordered k-Engel group is nilpotent of class bounded by a function of k.
The following result has been proved in 1995:

Theorem (P.L, M. Maj, A. H. Rhemtulla)

If an RO-group \((G, \leq)\) has no non-abelian free subsemigroups, then \(\leq\) is a Conrad order.

Therefore we get the following Question

Is it true that every RO \(k\)-Engel has no free non-abelian subsemigroups?

This is an old question for general \(k\)-Engel groups (see The Kourovka Notebook, Problem 2.82)

P. L. and M. Maj proved in 1997 that a right orderable 4-Engel group satisfies a non-trivial semigroup identity, hence it is nilpotent of bounded class. More generally G. Traustason proved in 1999 that any 4-Engel group satisfies a non-trivial semigroup identity and in 2005 G. Havas and M. Vaughan-Lee proved that 4-Engel groups are locally nilpotent. They are also Fitting groups by a result of G. Traustason.
The following result has been proved in 1995:

Theorem (P.L, M. Maj, A. H. Rhemtulla)

If an RO-group \((G, \leq)\) has no non-abelian free subsemigroups, then \(\leq\) is a Conrad order.

Therefore we get the following

Question

Is it true that every RO \(k\)-Engel has no free non-abelian subsemigroups?

This is an old question for general \(k\)-Engel groups (see The Kourovka Notebook, Problem 2.82)

P. L. and M. Maj proved in 1997 that a right orderable 4-Engel group satisfies a non-trivial semigroup identity, hence it is nilpotent of bounded class. More generally G. Traustason proved in 1999 that any 4-Engel group satisfies a non-trivial semigroup identity and in 2005 G. Havas and M. Vaughan-Lee proved that 4-Engel groups are locally nilpotent. They are also Fitting groups by a result of G. Traustason.
The following result has been proved in 1995:

Theorem (P.L, M. Maj, A. H. Rhemtulla)

> If an RO-group \((G, \leq)\) has no non-abelian free subsemigroups, then \(\leq\) is a Conrad order.

Therefore we get the following

Question

> Is it true that every RO \(k\)-Engel has no free non-abelian subsemigroups?

This is an old question for general \(k\)-Engel groups (see The Kourovka Notebook, Problem 2.82)
P. L. and M. Maj proved in 1997 that a right orderable 4-Engel group satisfies a non-trivial semigroup identity, hence it is nilpotent of bounded class. More generally G. Traustason proved in 1999 that any 4-Engel group satisfies a non-trivial semigroup identity and in 2005 G. Havas and M. Vaughan-Lee proved that 4-Engel groups are locally nilpotent. They are also Fitting groups by a result of G. Traustason.
The following result has been proved in 1995:

Theorem (P.L, M. Maj, A. H. Rhemtulla)

If an RO-group (G, \leq) has no non-abelian free subsemigroups, then \leq is a Conrad order.

Therefore we get the following

Question

Is it true that every RO k-Engel has no free non-abelian subsemigroups?

This is an old question for general k-Engel groups (see The Kourovka Notebook, Problem 2.82)

P. L. and M. Maj proved in 1997 that a right orderable 4-Engel group satisfies a non-trivial semigroup identity, hence it is nilpotent of bounded class. More generally G. Traustason proved in 1999 that any 4-Engel group satisfies a non-trivial semigroup identity and in 2005 G. Havas and M. Vaughan-Lee proved that 4-Engel groups are locally nilpotent. They are also Fitting groups by a result of G. Traustason.
The following result has been proved in 1995:

Theorem (P.L, M. Maj, A. H. Rhemtulla)

If an RO-group \((G, \leq)\) has no non-abelian free subsemigroups, then \(\leq\) is a Conrad order.

Therefore we get the following

Question

Is it true that every RO \(k\)-Engel has no free non-abelian subsemigroups?

This is an old question for general \(k\)-Engel groups (see The Kourovka Notebook, Problem 2.82)

P. L. and M. Maj proved in 1997 that a right orderable 4-Engel group satisfies a non-trivial semigroup identity, hence it is nilpotent of bounded class. More generally G. Traustason proved in 1999 that any 4-Engel group satisfies a non-trivial semigroup identity and in 2005 G. Havas and M. Vaughan-Lee proved that 4-Engel groups are locally nilpotent. They are also Fitting groups by a result of G. Traustason.
The following result has been proved in 1995:

Theorem (P.L, M. Maj, A. H. Rhemtulla)

If an RO-group \((G, \leq)\) has no non-abelian free subsemigroups, then \(\leq\) is a Conrad order.

Therefore we get the following

Question

Is it true that every RO \(k\)-Engel has no free non-abelian subsemigroups?

This is an old question for general \(k\)-Engel groups (see The Kourovka Notebook, Problem 2.82)

P. L. and M. Maj proved in 1997 that a right orderable 4-Engel group satisfies a non-trivial semigroup identity, hence it is nilpotent of bounded class. More generally G. Traustason proved in 1999 that any 4-Engel group satisfies a non-trivial semigroup identity and in 2005 G. Havas and M. Vaughan-Lee proved that 4-Engel groups are locally nilpotent. They are also Fitting groups by a result of G. Traustason.
Notice that if we only assume that the ordered group G is an Engel group it is not true that G is necessarily nilpotent, as the following example shows.

Example

Let A be an associative algebra over a field K. An element $a \in A$ is called *nilpotent* if $a^n = 0$ for some positive integer depending on a. If all elements of A are nilpotent the A is called a *nil-algebra*. The algebra A is called *nilpotent* if there exists a positive integer n such that $a_1 a_2 \cdots a_n = 0$, for any $a_1, \cdots, a_n \in A$. Obviously every nilpotent algebra is a nil-algebra, the converse is not true. Let A be an associative algebra with a unit element 1 and B a nil-subalgebra of A. The elements of the form $1 + u$, $u \in B$, with the product of A form a group $G(B)$. It is easy to prove that this group is nilpotent if B is nilpotent.

E. S. Golod constructed in 1966, for any field K and any integer $d \geq 3$, a non-nilpotent d-generated associative algebra F such that every $(d - 1)$-generated subalgebra is nilpotent. The group $G(F)$ is a non-nilpotent Engel group. V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla noticed in 2005 that if K is of characteristic 0, then the group $G(F)$ is residually-(torsion-free nilpotent), thus it is also orderable.
Notice that if we only assume that the ordered group G is an Engel group it is not true that G is necessarily nilpotent, as the following example shows.

Example

Let A be an associative algebra over a field K. An element $a \in A$ is called *nilpotent* if $a^n = 0$ for some positive integer depending on a. If all elements of A are nilpotent the A is called a *nil-algebra*. The algebra A is called *nilpotent* if there exists a positive integer n such that $a_1a_2\cdots a_n = 0$, for any $a_1, \cdots, a_n \in A$. Obviously every nilpotent algebra is a nil-algebra, the converse is not true. Let A be an associative algebra with a unit element 1 and B a nil-subalgebra of A. The elements of the form $1 + u$, $u \in B$, with the product of A form a group $G(B)$. It is easy to prove that this group is nilpotent if B is nilpotent.

E. S. Golod constructed in 1966, for any field K and any integer $d \geq 3$, a non-nilpotent d-generated associative algebra F such that every $(d - 1)$-generated subalgebra is nilpotent. The group $G(F)$ is a non-nilpotent Engel group. V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla noticed in 2005 that if K is of characteristic 0, then the group $G(F)$ is residually-(torsion-free nilpotent), thus it is also orderable.
It is still open the following

Question (V. V. Bludov, problem 16.15 in The Kourovka Notebook)

Does the set of left Engel elements of an ordered group form a subgroup?

It is also open the following

Question (A. I. Kokorin, problem 2.24 in The Kourovka Notebook)

Is every lattice ordered Engel group residually orderable?

Recently V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla proved in 2005 the following interesting results

Theorem

If an orderable group is generated by left Engel elements, then every convex jump is central.

Theorem

If an orderable group G is an Engel group, then every two-generated subgroup of G has all convex jumps central.
It is still open the following

Question (V. V. Bludov, problem 16.15 in The Kourovka Notebook)

Does the set of left Engel elements of an ordered group form a subgroup?

It is also open the following

Question (A. I. Kokorin, problem 2.24 in The Kourovka Notebook)

Is every lattice ordered Engel group residually orderable?

Recently V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla proved in 2005 the following interesting results

Theorem

If an orderable group is generated by left Engel elements, then every convex jump is central.

Theorem

If an orderable group G is an Engel group, then every two-generated subgroup of G has all convex jumps central.
It is still open the following

Question (V. V. Bludov, problem 16.15 in The Kourovka Notebook)

Does the set of left Engel elements of an ordered group form a subgroup?

It is also open the following

Question (A. I. Kokorin, problem 2.24 in The Kourovka Notebook)

Is every lattice ordered Engel group residually orderable?

Recently V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla proved in 2005 the following interesting results

Theorem

If an orderable group is generated by left Engel elements, then every convex jump is central.

Theorem

If an orderable group G is an Engel group, then every two-generated subgroup of G has all convex jumps central.
It is still open the following

Question (V. V. Bludov, problem 16.15 in The Kourovka Notebook)

Does the set of left Engel elements of an ordered group form a subgroup?

It is also open the following

Question (A. I. Kokorin, problem 2.24 in The Kourovka Notebook)

Is every lattice ordered Engel group residually orderable?

Recently V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla proved in 2005 the following interesting results

Theorem

If an orderable group is generated by left Engel elements, then every convex jump is central.

Theorem

If an orderable group G is an Engel group, then every two-generated subgroup of G has all convex jumps central.
It is still open the following

Question (V. V. Bludov, problem 16.15 in The Kourovka Notebook)

Does the set of left Engel elements of an ordered group form a subgroup?

It is also open the following

Question (A. I. Kokorin, problem 2.24 in The Kourovka Notebook)

Is every lattice ordered Engel group residually orderable?

Recently V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla proved in 2005 the following interesting results

Theorem

If an orderable group is generated by left Engel elements, then every convex jump is central.

Theorem

If an orderable group G is an Engel group, then every two-generated subgroup of G has all convex jumps central.
It is still open the following

Question (V. V. Bludov, problem 16.15 in The Kourovka Notebook)

Does the set of left Engel elements of an ordered group form a subgroup?

It is also open the following

Question (A. I. Kokorin, problem 2.24 in The Kourovka Notebook)

Is every lattice ordered Engel group residually orderable?

Recently V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla proved in 2005 the following interesting results

Theorem

If an orderable group is generated by left Engel elements, then every convex jump is central.

Theorem

If an orderable group G is an Engel group, then every two-generated subgroup of G has all convex jumps central.
It is still open the following

Question (V. V. Bludov, problem 16.15 in The Kourovka Notebook)

Does the set of left Engel elements of an ordered group form a subgroup?

It is also open the following

Question (A. I. Kokorin, problem 2.24 in The Kourovka Notebook)

Is every lattice ordered Engel group residually orderable?

Recently V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla proved in 2005 the following interesting results

Theorem

If an orderable group is generated by left Engel elements, then every convex jump is central.

Theorem

If an orderable group G is an Engel group, then every two-generated subgroup of G has all convex jumps central.
V. V. Bludov, A. M. W. Glass, V. M. Kopytov, N. Ya. Medvedev

Engel conditions in combinatorial problems

Let X be a class of groups. Given a group G, let $\Gamma_{X^\circ}(G)$ be the simple graph whose vertices are the elements of G, and different vertices x and y are connected by an edge if the subgroup $\langle x, y \rangle$ belongs to the class X. The group G is said to be an X°–group if the graph $\Gamma_{X^\circ}(G)$ has no infinite totally disconnected subgraphs, i.e. in any infinite subset of G there exist different elements x, y such that $\langle x, y \rangle \in X$.

If the set $S(X)$ is a subgroup of G of finite index, where $S(X)$ consists of all elements $a \in G$ such that, for any $g \in G$, $\langle a, g \rangle \in X$, then it is easy to show that G is a X°-group.

For example this is true if $X = A$, where A denotes the class of all abelian groups: here $S(A) = Z(G)$; conversely B. H. Neumann, answering to a question posed by P. Erdös, proved he following result.

Theorem (B. H. Neumann, 1976)

G is an A°-group if and only if $G/Z(G)$ is finite.

The proof uses Ramsey’s theorem.
Engel conditions in combinatorial problems

Let X be a class of groups. Given a group G, let $\Gamma_{X^\circ}(G)$ be the simple graph whose vertices are the elements of G, and different vertices x and y are connected by an edge if the subgroup $\langle x, y \rangle$ belongs to the class X. The group G is said to be an X°–group if the graph $\Gamma_{X^\circ}(G)$ has no infinite totally disconnected subgraphs, i.e. in any infinite subset of G there exist different elements x, y such that $\langle x, y \rangle \in X$.

If the set $S(X)$ is a subgroup of G of finite index, where $S(X)$ consists of all elements $a \in G$ such that, for any $g \in G$, $\langle a, g \rangle \in X$, then it is easy to show that G is a X°-group.

For example this is true if $X = A$, where A denotes the class of all abelian groups: here $S(A) = Z(G)$; conversely B. H. Neumann, answering to a question posed by P. Erdös, proved he following result.

Theorem (B. H. Neumann, 1976)

G is an A°-group if and only if $G/Z(G)$ is finite.

The proof uses Ramsey’s theorem.
Let X be a class of groups. Given a group G, let $\Gamma_{X^{\circ}}(G)$ be the simple graph whose vertices are the elements of G, and different vertices x and y are connected by an edge if the subgroup $\langle x, y \rangle$ belongs to the class X. The group G is said to be an X°-group if the graph $\Gamma_{X^{\circ}}(G)$ has no infinite totally disconnected subgraphs, i.e. in any infinite subset of G there exist different elements x, y such that $\langle x, y \rangle \in X$.

If the set $S(X)$ is a subgroup of G of finite index, where $S(X)$ consists of all elements $a \in G$ such that, for any $g \in G$, $\langle a, g \rangle \in X$, then it is easy to show that G is a X°-group.

For example this is true if $X = A$, where A denotes the class of all abelian groups: here $S(A) = Z(G)$; conversely B. H. Neumann, answering to a question posed by P. Erdős, proved he following result:

Theorem (B. H. Neumann, 1976)

G is an A°-group if and only if $G/Z(G)$ is finite.

The proof uses Ramsey’s theorem.
Engel conditions in combinatorial problems

Let X be a class of groups. Given a group G, let $\Gamma_X(G)$ be the simple graph whose vertices are the elements of G, and different vertices x and y are connected by an edge if the subgroup $\langle x, y \rangle$ belongs to the class X. The group G is said to be an $X\circ$ group if the graph $\Gamma_X(G)$ has no infinite totally disconnected subgraphs, i.e. in any infinite subset of G there exist different elements x, y such that $\langle x, y \rangle \in X$.

If the set $S(X)$ is a subgroup of G of finite index, where $S(X)$ consists of all elements $a \in G$ such that, for any $g \in G$, $\langle a, g \rangle \in X$, then it is easy to show that G is a $X\circ$-group.

For example this is true if $X = A$, where A denotes the class of all abelian groups: here $S(A) = Z(G)$; conversely B. H. Neumann, answering to a question posed by P. Erdös, proved the following result.

Theorem (B. H. Neumann, 1976)

G is an $A\circ$-group if and only if $G/Z(G)$ is finite.

The proof uses Ramsey’s theorem.
Engel conditions in combinatorial problems

Let X be a class of groups. Given a group G, let $\Gamma_{X^\circ}(G)$ be the simple graph whose vertices are the elements of G, and different vertices x and y are connected by an edge if the subgroup $\langle x, y \rangle$ belongs to the class X. The group G is said to be an X°–group if the graph $\Gamma_{X^\circ}(G)$ has no infinite totally disconnected subgraphs, i.e. in any infinite subset of G there exist different elements x, y such that $\langle x, y \rangle \in X$.

If the set $S(X)$ is a subgroup of G of finite index, where $S(X)$ consists of all elements $a \in G$ such that, for any $g \in G$, $\langle a, g \rangle \in X$, then it is easy to show that G is a X°-group.

For example this is true if $X = A$, where A denotes the class of all abelian groups: here $S(A) = Z(G)$; conversely B. H. Neumann, answering to a question posed by P. Erdös, proved he following result

Theorem (B. H. Neumann, 1976)

G is an A°-group if and only if $G/Z(G)$ is finite.

The proof uses Ramsey’s theorem.
Engel conditions in combinatorial problems

Let X be a class of groups. Given a group G, let $\Gamma_X(G)$ be the simple graph whose vertices are the elements of G, and different vertices x and y are connected by an edge if the subgroup $\langle x, y \rangle$ belongs to the class X. The group G is said to be an X°–group if the graph $\Gamma_X(G)$ has no infinite totally disconnected subgraphs, i.e. in any infinite subset of G there exist different elements x, y such that $\langle x, y \rangle \in X$.

If the set $S(X)$ is a subgroup of G of finite index, where $S(X)$ consists of all elements $a \in G$ such that, for any $g \in G$, $\langle a, g \rangle \in X$, then it is easy to show that G is a X°-group.

For example this is true if $X = A$, where A denotes the class of all abelian groups: here $S(A) = Z(G)$; conversely B. H. Neumann, answering to a question posed by P. Erdös, proved he following result

Theorem (B. H. Neumann, 1976)

G is an A°-group if and only if $G/Z(G)$ is finite.

The proof uses Ramsey’s theorem.
Engel conditions in combinatorial problems

Let X be a class of groups. Given a group G, let $\Gamma_X (G)$ be the simple graph whose vertices are the elements of G, and different vertices x and y are connected by an edge if the subgroup $\langle x, y \rangle$ belongs to the class X. The group G is said to be an $X^\circ - group$ if the graph $\Gamma_X (G)$ has no infinite totally disconnected subgraphs, i.e. in any infinite subset of G there exist different elements x, y such that $\langle x, y \rangle \in X$.

If the set $S(X)$ is a subgroup of G of finite index, where $S(X)$ consists of all elements $a \in G$ such that, for any $g \in G$, $\langle a, g \rangle \in X$, then it is easy to show that G is a X°-group.

For example this is true if $X = A$, where A denotes the class of all abelian groups: here $S(A) = Z(G)$; conversely B. H. Neumann, answering to a question posed by P. Erdős, proved he following result

Theorem (B. H. Neumann, 1976)

G is an A°-group if and only if $G/Z(G)$ is finite.

The proof uses Ramsey’s theorem.
Engel conditions in combinatorial problems

Let X be a class of groups. Given a group G, let $\Gamma_{X^\circ}(G)$ be the simple graph whose vertices are the elements of G, and different vertices x and y are connected by an edge if the subgroup $\langle x, y \rangle$ belongs to the class X. The group G is said to be an X°--group if the graph $\Gamma_{X^\circ}(G)$ has no infinite totally disconnected subgraphs, i.e. in any infinite subset of G there exist different elements x, y such that $\langle x, y \rangle \in X$.

If the set $S(X)$ is a subgroup of G of finite index, where $S(X)$ consists of all elements $a \in G$ such that, for any $g \in G$, $\langle a, g \rangle \in X$, then it is easy to show that G is a X°-group.

For example this is true if $X = A$, where A denotes the class of all abelian groups: here $S(A) = Z(G)$; conversely B. H. Neumann, answering to a question posed by P. Erdös, proved the following result:

Theorem (B. H. Neumann, 1976)

G is an A°-group if and only if $G/Z(G)$ is finite.

The proof uses Ramsey’s theorem.
J.C. Lennox and J. Wiegold studied N°-groups, where N denotes the class of all nilpotent groups, and proved the following

Theorem (J.C. Lennox and J. Wiegold, 1981)

Let G be a finitely generated soluble group. Then G is an N°-group if and only if it is finite-by-nilpotent.

For any prime $p \geq 5$, M.R. Vaughan-Lee and J. Wiegold constructed in 1981 a countable locally finite group of exponent p which is perfect, and such that each of its 2-generator subgroups is nilpotent of bounded class. Hence the result of the previous theorem does not hold in general, even if we assume there is a bound for the nilpotence class of all 2-generated subgroups.
J.C. Lennox and J. Wiegold studied N°-groups, where N denotes the class of all nilpotent groups, and proved the following

Theorem (J.C. Lennox and J. Wiegold, 1981)

Let G be a finitely generated soluble group. Then G is an N°-group if and only if it is finite-by-nilpotent.

For any prime $p \geq 5$, M.R. Vaughan-Lee and J. Wiegold constructed in 1981 a countable locally finite group of exponent p which is perfect, and such that each of its 2-generator subgroups is nilpotent of bounded class. Hence the result of the previous theorem does not hold in general, even if we assume there is a bound for the nilpotence class of all 2-generated subgroups.
J.C. Lennox and J. Wiegold studied N°-groups, where N denotes the class of all nilpotent groups, and proved the following

Theorem (J.C. Lennox and J. Wiegold, 1981)

Let G be a finitely generated soluble group. Then G is an N°-group if and only if it is finite-by-nilpotent.

For any prime $p \geq 5$, M.R. Vaughan-Lee and J. Wiegold constructed in 1981 a countable locally finite group of exponent p which is perfect, and such that each of its 2-generator subgroups is nilpotent of bounded class. Hence the result of the previous theorem does not hold in general, even if we assume there is a bound for the nilpotence class of all 2-generated subgroups.
For the class N_k°, where N_k is the class of nilpotent groups of class at most k, generalizing previous results by A. Abdollahi and B. Taeri and by C. Delizia, C. Delizia, A. H. Rhemtulla and H. Smith proved the following

Let G be a finitely generated locally graded N_k°-group. Then there is a positive integer c depending only on k such that $G/Z_c(G)$ is finite.

The proof uses deep results by Lubotzky and Mann and the positive answer, due to Zel’manov, to the Restricted Burnside problem.
For the class N_k°, where N_k is the class of nilpotent groups of class at most k, generalizing previous results by A. Abdollahi and B. Taeri and by C. Delizia, C. Delizia, A. H. Rhemtulla and H. Smith proved the following

Let G be a finitely generated locally graded N_k°-group. Then there is a positive integer c depending only on k such that $G/Z_c(G)$ is finite.

The proof uses deep results by Lubotzky and Mann and the positive answer, due to Zel’manov, to the Restricted Burnside problem.
For the class N°_k, where N_k is the class of nilpotent groups of class at most k, generalizing previous results by A. Abdollahi and B. Taeri and by C. Delizia, C. Delizia, A. H. Rhemtulla and H. Smith proved the following

Theorem (C. Delizia, A. H. Rhemtulla and H. Smith, 2000)

Let G be a finitely generated locally graded N°_k-group. Then there is a positive integer c depending only on k such that $G/Z_c(G)$ is finite.

The proof uses deep results by Lubotzky and Mann and the positive answer, due to Zel’manov, to the Restricted Burnside problem.
If X is the class E_k of all k-Engel groups we get, using the previous theorem, the following result:

Theorem (P. L., 2001)

Let G be a finitely generated locally graded E_k°-group. Then G is finite-by-$(k$-Engel) (in particular it is a finite extension of a k-Engel group).

Proof.

- First we show that if G is a torsion-free nilpotent group such that in every infinite subset X of G there exist two elements x, y s.t. $[x, ky] = 1 = [y, kx]$, then G is a k-Engel group.

- We use Delizia, Rhemtulla, Smith result to show that if G is a finitely generated residually finite group in E_k°, then G is finite-by-E_k.

- ...
If X is the class E_k of all k-Engel groups we get, using the previous theorem, the following result:

Theorem (P. L., 2001)

Let G be a finitely generated locally graded E_k°-group. Then G is finite-by-$(k$-Engel) (in particular it is a finite extension of a k-Engel group).

Proof.

- First we show that if G is a torsion-free nilpotent group such that in every infinite subset X of G there exist two elements x, y s.t. $[x, k y] = 1 = [y, k x]$, then G is a k-Engel group.
- We use Delizia, Rhemtulla, Smith result to show that if G is a finitely generated residually finite group in E_k°, then G is finite-by-E_k.
- ...

If X is the class E_k of all k-Engel groups we get, using the previous theorem, the following result:

Theorem (P. L., 2001)

Let G be a finitely generated locally graded E_k°-group. Then G is finite-by-$(k$-Engel) (in particular it is a finite extension of a k-Engel group).

Proof.

- First we show that if G is a torsion-free nilpotent group such that in every infinite subset X of G there exist two elements x, y s.t. $[x, ky] = 1 = [y, kx]$, then G is a k-Engel group.

- We use Delizia, Rhemtulla, Smith result to show that if G is a finitely generated residually finite group in E_k°, then G is finite-by-E_k.

...
If X is the class E_k of all k-Engel groups we get, using the previous theorem, the following result:

Theorem (P. L., 2001)

Let G be a finitely generated locally graded E_k°-group. Then G is finite-by-(k-Engel) (in particular it is a finite extension of a k-Engel group).

Proof.

- First we show that if G is a torsion-free nilpotent group such that in every infinite subset X of G there exist two elements x, y s.t. $[x, ky] = 1 = [y, kx]$, then G is a k-Engel group.
- We use Delizia, Rhemtulla, Smith result to show that if G is a finitely generated residually finite group in E_k°, then G is finite-by-E_k.

...
If X is the class E_k of all k-Engel groups we get, using the previous theorem, the following result:

Theorem (P. L., 2001)

Let G be a finitely generated locally graded E_k°-group. Then G is finite-by-$(k$-Engel) (in particular it is a finite extension of a k-Engel group).

Proof.

- First we show that if G is a torsion-free nilpotent group such that in every infinite subset X of G there exist two elements x, y s.t. $[x, ky] = 1 = [y, kx]$, then G is a k-Engel group.
- We use Delizia, Rhemtulla, Smith result to show that if G is a finitely generated residually finite group in E_k°, then G is finite-by-E_k.
- ...
Suppose now that X is a variety defined by the two-variables law $w(s, t) = 1$.
Given a group G, let $\Gamma_X^*(G)$ be the simple graph whose vertices are all elements of G, and different vertices x and y are connected by an edge if $w(x, y) = 1$.
The group G is said to be an X^\star-group if the graph $\Gamma_X^*(G)$ has no infinite totally disconnected subgraphs.

Of course, every X°-group is an X^\star-group.
If A is the variety of abelian groups defined by the law $[x, y] = 1$, then obviously $A^\circ = A^\star$.
Suppose now that X is a variety defined by the two-variables law $w(s, t) = 1$.
Given a group G, let $\Gamma_X(G)$ be the simple graph whose vertices are all elements of G, and different vertices x and y are connected by an edge if $w(x, y) = 1$.

The group G is said to be an $X^* - group$ if the graph $\Gamma_X(G)$ has no infinite totally disconnected subgraphs.

Of course, every X°-group is an X^*-group.
If A is the variety of abelian groups defined by the law $[x, y] = 1$, then obviously $A^\circ = A^*$.
Suppose now that X is a variety defined by the two-variables law $w(s, t) = 1$.

Given a group G, let $\Gamma_{X^*}(G)$ be the simple graph whose vertices are all elements of G, and different vertices x and y are connected by an edge if $w(x, y) = 1$.

The group G is said to be an X^*-group if the graph $\Gamma_{X^*}(G)$ has no infinite totally disconnected subgraphs.

Of course, every X°-group is an X^*-group. If A is the variety of abelian groups defined by the law $[x, y] = 1$, then obviously $A^\circ = A^*$.
Suppose now that X is a variety defined by the two-variables law $w(s, t) = 1$.

Given a group G, let $\Gamma_{X^*}(G)$ be the simple graph whose vertices are all elements of G, and different vertices x and y are connected by an edge if $w(x, y) = 1$.

The group G is said to be an X^*-group if the graph $\Gamma_{X^*}(G)$ has no infinite totally disconnected subgraphs.

Of course, every X°-group is an X^*-group.

If A is the variety of abelian groups defined by the law $[x, y] = 1$, then obviously $A^\circ = A^*$.
Suppose now that X is a variety defined by the two-variables law $w(s, t) = 1$.

Given a group G, let $\Gamma_X(G)$ be the simple graph whose vertices are all elements of G, and different vertices x and y are connected by an edge if $w(x, y) = 1$.

The group G is said to be an X-group if the graph $\Gamma_X(G)$ has no infinite totally disconnected subgraphs.

Of course, every X°-group is an X^*-group.

If A is the variety of abelian groups defined by the law $[x, y] = 1$, then obviously $A^\circ = A^*$.
It is much more difficult to deal with the class E_k^\ast, where E_k is the variety of all k-Engel groups defined by the two-variables law $[x, ky] = 1$.

It is possible to show the following result:

Theorem (A. Abdollahi, 2000)

Let G be a finitely generated soluble E_k^\ast-group. Then there is a positive integer c depending only on k such that $G/Z_c(G)$ is finite.

There is still no answer to the following question:

Question

Is every E_k^\ast-group also a E_k°-group?
It is much more difficult to deal with the class E_k^*, where E_k is the variety of all k-Engel groups defined by the two-variables law $[x, ky] = 1$.

It is possible to show the following result:

Theorem (A. Abdollahi, 2000)

Let G be a finitely generated soluble E_k^*-group. Then there is a positive integer c depending only on k such that $G/Z_c(G)$ is finite.

There is still no answer to the following

Question

Is every E_k^*-group also a E_k^o-group?
It is much more difficult to deal with the class E_k^*, where E_k is the variety of all k-Engel groups defined by the two-variables law $[x, ky] = 1$.

It is possible to show the following result:

Theorem (A. Abdollahi, 2000)

Let G be a finitely generated soluble E_k^-group.*

Then there is a positive integer c depending only on k such that $G/Z_c(G)$ is finite.

There is still no answer to the following

Question

Is every E_k^-group also a E_k^o-group?*
It is much more difficult to deal with the class E^*_k, where E_k is the variety of all k-Engel groups defined by the two-variables law $[x, ky] = 1$.

It is possible to show the following result:

Theorem (A. Abdollahi, 2000)

Let G be a finitely generated soluble E^*_k-group. Then there is a positive integer c depending only on k such that $G/Z_c(G)$ is finite.

There is still no answer to the following

Question

Is every E^*_k-group also a E^*_k-group?
It is much more difficult to deal with the class E_k^*, where E_k is the variety of all k-Engel groups defined by the two-variables law $[x, ky] = 1$.

It is possible to show the following result:

Theorem (A. Abdollahi, 2000)

Let G be a finitely generated soluble E_k^*-group.
Then there is a positive integer c depending only on k such that $G/Z_c(G)$ is finite.

There is still no answer to the following

Question

Is every E_k^*-group also a E_k^c-group?
It is much more difficult to deal with the class E^*_k, where E_k is the variety of all k-Engel groups defined by the two-variables law $[x, ky] = 1$.

It is possible to show the following result:

Theorem (A. Abdollahi, 2000)

Let G be a finitely generated soluble E^*_k-group. Then there is a positive integer c depending only on k such that $G/Z_c(G)$ is finite.

There is still no answer to the following question:

Question

Is every E^*_k-group also a E^*_k-group?
If G is locally graded and $k = 2$ recently C. Delizia and C. Nicotera proved the following

Theorem (C. Delizia, C. Nicotera, 2007)

Let G be a finitely generated locally graded E_2^-group. Then $G/Z_2(G)$ is finite.*

Proof.

- First we show that $\langle x \rangle \langle y \rangle$ is finitely generated, for any $x, y \in G$. In fact, obviously we may assume that y has infinite order. Thus the set

\[
\{xy^i : i > 1\}
\]

is infinite.

There exist different integers $i, j > 1$ such that $[xy^i, xy^j, xy^j] = 1$. It easily follows that

\[
x^{y^j} x^{y^i-j} x^{-1} x^{-y^i} = 1.
\]

If $j > i$, we get $x^{y^j} = x^{y^i} xx^{-y^i-j}$; if $i > j$, we obtain

\[
x^{y^i} = x^{y^j} x^{y^i-j} x^{-1}.
\]

In both cases we conclude that

\[
\langle x^{y^n} : n \geq 0 \rangle \leq \langle x^{y^n} : |n| < \max \{i, j\} \rangle.
\]
If G is locally graded and $k = 2$ recently C. Delizia and C. Nicotera proved the following

Theorem (C. Delizia, C. Nicotera, 2007)

Let G be a finitely generated locally graded E_2^*-group. Then $G/Z_2(G)$ is finite.

Proof.

- First we show that $<x><y>$ is finitely generated, for any $x, y \in G$. In fact, obviously we may assume that y has infinite order. Thus the set
 \[
 \{xy^i : i > 1\}
 \]
 is infinite.

 There exist different integers $i, j > 1$ such that $[xy^i, xy^j, xy^j] = 1$. It easily follows that $x^{y^j}x^{y^i-j}x^{-1}x^{-y^i} = 1$.

 If $j > i$, we get $x^{y^j} = x^{y^i}xx^{-y^i-j}$; if $i > j$, we obtain $x^{y^i} = x^{y^j}x^{y^i-j}x^{-1}$.

 In both cases we conclude that
 \[
 \langle x^{y^n} : n \geq 0 \rangle \leq \langle x^{y^n} : |n| < \max \{i, j\} \rangle.
 \]
If G is locally graded and $k = 2$ recently C. Delizia and C. Nicotera proved the following

Theorem (C. Delizia, C. Nicotera, 2007)

Let G be a finitely generated locally graded E_2^-group. Then $G/Z_2(G)$ is finite.*

Proof.

- First we show that $\langle x \rangle \langle y \rangle$ is finitely generated, for any $x, y \in G$.
 - In fact, obviously we may assume that y has infinite order. Thus the set
 $$\{xy^i : i > 1\}$$
 - is infinite.

There exist different integers $i, j > 1$ such that $[xy^i, xy^j, xy^j] = 1$.

- It easily follows that $xy^j x y^{i-j} x^{-1} x^{-y} = 1$.
- If $j > i$, we get $x y^j = x y^i x x^{-y} y^{-j}$; if $i > j$, we obtain $x y^j = x y^j x y^{i-j} x^{-1}$.

In both cases we conclude that
 $$\langle x y^n : n \geq 0 \rangle \leq \langle x y^n : |n| < \max\{i, j\} \rangle.$$
If \(G \) is locally graded and \(k = 2 \) recently C. Delizia and C. Nicotera proved the following

Theorem (C. Delizia, C. Nicotera, 2007)

Let \(G \) be a finitely generated locally graded \(E_2\)-group. Then \(G/Z_2(G) \) is finite.

Proof.

- First we show that \(<x><y>\) is finitely generated, for any \(x, y \in G \).
 - In fact, obviously we may assume that \(y \) has infinite order. Thus the set
 \[
 \{xy^i : i > 1\}
 \]
 - is infinite.
 - There exist different integers \(i, j > 1 \) such that \([xy^i, xy^j, xy^j] = 1\).
 - It easily follows that \(xy^j x y^{i-j} x^{-1} x^{-y^i} = 1\).
 - If \(j > i \), we get \(x y^j = x y^i x x^{-y^i} x^{-j} \); if \(i > j \), we obtain
 \(x y^i = x y^j x y^{i-j} x^{-1} \).
 - In both cases we conclude that
 \[
 \langle x^{-y^n} : n \geq 0 \rangle \leq \langle x^{-y^n} : |n| < \max \{i, j\} \rangle.
 \]
If G is locally graded and $k = 2$ recently C. Delizia and C. Nicotera proved the following

Theorem (C. Delizia, C. Nicotera, 2007)

Let G be a finitely generated locally graded E_2^*-group. Then $G/Z_2(G)$ is finite.

Proof.

- First we show that $\langle x \rangle \langle y \rangle$ is finitely generated, for any $x, y \in G$.

 In fact, obviously we may assume that y has infinite order. Thus the set

 $$\{xy^i : i > 1\}$$

 is infinite.

 There exist different integers $i, j > 1$ such that $[xy^i, xy^j, xy^j] = 1$.

 It easily follows that $x^{y^j} x^{y^i-j} x^{-1} x^{-y^j} = 1$.

 If $j > i$, we get $x^{y^j} = x^{y^j} xx^{-y^i-j}$; if $i > j$, we obtain $x^{y^i} = x^{y^j} x^{y^i-j} x^{-1}$.

 In both cases we conclude that

 $$\langle x^{y^n} : n \geq 0 \rangle \leq \langle x^{y^n} : |n| < \max \{i, j\} \rangle.$$
If G is locally graded and $k = 2$ recently C. Delizia and C. Nicotera proved the following

Theorem (C. Delizia, C. Nicotera, 2007)

Let G be a finitely generated locally graded E_2^*-group. Then $G/Z_2(G)$ is finite.

Proof.

- First we show that $\langle x \rangle \langle y \rangle$ is finitely generated, for any $x, y \in G$. In fact, obviously we may assume that y has infinite order. Thus the set

 $$\{xy^i : i > 1\}$$

 is infinite.

 There exist different integers $i, j > 1$ such that $[xy^i, xy^j, xy^j] = 1$. It easily follows that $x^{y^j} x^{y^i-j} x^{-1} x^{-y^i} = 1$.

 If $j > i$, we get $x^{y^j} = x^{y^i} x x^{-y^i-j}$; if $i > j$, we obtain $x^{y^i} = x^{y^j} x^{y^i-j} x^{-1}$.

 In both cases we conclude that

 $$\langle x^{y^n} : n \geq 0 \rangle \leq \langle x^{y^n} : |n| < \max \{i,j\} \rangle.$$
If G is locally graded and $k = 2$ recently C. Delizia and C. Nicotera proved the following

Theorem (C. Delizia, C. Nicotera, 2007)

Let G be a finitely generated locally graded E_2^-group. Then $G/Z_2(G)$ is finite.*

Proof.

- First we show that $\langle x \rangle \langle y \rangle$ is finitely generated, for any $x, y \in G$. In fact, obviously we may assume that y has infinite order. Thus the set

 $$\{xy^i : i > 1\}$$

 is infinite.

- There exist different integers $i, j > 1$ such that $[xy^i, xy^j, xy^j] = 1$.

 It easily follows that $x^{y^j}x^{-y^i}x^{-1}x^{-y^j} = 1$.

 If $j > i$, we get $x^{y^j} = x^{y^i}xx^{-y^i}^{-j}$; if $i > j$, we obtain $x^{y^j} = x^{y^j}x^{y^j}^{-j}x^{-1}$.

 In both cases we conclude that

 $$\langle x^{y^n} : n \geq 0 \rangle \leq \langle x^{y^n} : |n| < \max \{i, j\} \rangle.$$
If G is locally graded and $k = 2$ recently C. Delizia and C. Nicotera proved the following

Theorem (C. Delizia, C. Nicotera, 2007)

Let G be a finitely generated locally graded E_2^-group. Then $G/Z_2(G)$ is finite.*

Proof.

- First we show that $\langle x \rangle \langle y \rangle$ is finitely generated, for any $x, y \in G$.
 - In fact, obviously we may assume that y has infinite order. Thus the set
 $$\{xy^i : i > 1\}$$
 - is infinite.
 - There exist different integers $i, j > 1$ such that $[xy^i, xy^j, xy^j] = 1$.
 - It easily follows that $x^{y^j}x^{y^i-j}x^{-1}x^{-y^i} = 1$.
 - If $j > i$, we get $x^{y^j} = x^{y^j}xx^{-y^i-j}$; if $i > j$, we obtain $x^{y^i} = x^{y^j}x^{y^i-j}x^{-1}$.
 - In both cases we conclude that
 $$\langle x^{y^n} : n \geq 0 \rangle \leq \langle x^{y^n} : |n| < \max \{i, j\} \rangle.$$
If G is locally graded and $k = 2$ recently C. Delizia and C. Nicotera proved the following

Theorem (C. Delizia, C. Nicotera, 2007)

*Let G be a finitely generated locally graded E^*_2-group. Then $G / Z_2(G)$ is finite.*

Proof.

- First we show that $\langle x \rangle \langle y \rangle$ is finitely generated, for any $x, y \in G$. In fact, obviously we may assume that y has infinite order. Thus the set

$$\{xy^i : i > 1\}$$

is infinite.

There exist different integers $i, j > 1$ such that $[xy^i, xy^j, xy^j] = 1$. It easily follows that $x^{y^j}x^{y^j-i}x^{-1}x^{-y^i} = 1$.

If $j > i$, we get $x^{y^j} = x^{y^i}xx^{-y^j}$; if $i > j$, we obtain $x^{y^i} = x^{y^j}x^{y^j-i}x^{-1}$.

In both cases we conclude that

$$\langle x^{y^n} : n \geq 0 \rangle \leq \langle x^{y^n} : |n| < \max \{i, j\} \rangle.$$
If G is locally graded and $k = 2$ recently C. Delizia and C. Nicotera proved the following

Theorem (C. Delizia, C. Nicotera, 2007)

Let G be a finitely generated locally graded E_2^-group. Then $G/Z_2(G)$ is finite.*

Proof.

- First we show that $\langle x \rangle \langle y \rangle$ is finitely generated, for any $x, y \in G$.

In fact, obviously we may assume that y has infinite order. Thus the set

$$\{xy^i : i > 1\}$$

is infinite.

There exist different integers $i, j > 1$ such that $[xy^i, xy^j, xy^j] = 1$.

It easily follows that $xy^j x^{-1} x x^{-y^i} = 1$.

If $j > i$, we get $x y^j = x y^i x x^{-y^i} x^{-j}$; if $i > j$, we obtain $x y^i = x y^j x y^{-j} x^{-1}$.

In both cases we conclude that

$$\langle x y^n : n \geq 0 \rangle \leq \langle x y^n : |n| < \max \{i, j\} \rangle.$$
Now starting from the infinite set \(\{xy^i : i < 1\} \) and repeating the previous argument, we can prove that
\[
\langle x^{y^n} : n \leq 0 \rangle \leq \langle x^{y^n} : |n| < \max \{h, k\} \rangle
\]
for suitable integers \(h, k > 1 \). Therefore
\[
\langle x \rangle \langle y \rangle = \langle x^{y^n} : |n| < m \rangle
\]
for some positive integer \(m \).

- By Lemma 2 the derived subgroup \(G' \) is finitely generated and, by induction, \(\gamma_i(G) \) is finitely generated, for all \(i > 0 \).
- Let \(R \) be the finite residual of \(G \). Since \(G/\gamma_i(G) \) is nilpotent and finitely generated, then it is residually finite and \(R \subseteq \gamma_i(G) \), for any \(i \geq 1 \).
Now starting from the infinite set \(\{xy^i : i < 1\} \) and repeating the previous argument, we can prove that \(\langle x^{y^n} : n \leq 0 \rangle \leq \langle x^{y^n} : |n| < \max \{h, k\} \rangle \) for suitable integers \(h, k > 1 \). Therefore

\[
\langle x \rangle \langle y \rangle = \langle x^{y^n} : |n| < m \rangle
\]

for some positive integer \(m \).

- By Lemma 2 the derived subgroup \(G' \) is finitely generated and, by induction, \(\gamma_i(G) \) is finitely generated, for all \(i > 0 \).

- Let \(R \) be the finite residual of \(G \). Since \(G/\gamma_i(G) \) is nilpotent and finitely generated, then it is residually finite and \(R \subseteq \gamma_i(G) \), for any \(i \geq 1 \).
Now starting from the infinite set \(\{ xy^i : i < 1 \} \) and repeating the previous argument, we can prove that \(\langle x^{y^n} : n \leq 0 \rangle \leq \langle x^{y^n} : |n| < \max \{ h, k \} \rangle \) for suitable integers \(h, k > 1 \). Therefore

\[
\langle x \rangle \langle y \rangle = \langle x^{y^n} : |n| < m \rangle
\]

for some positive integer \(m \).

- By Lemma 2 the derived subgroup \(G' \) is finitely generated and, by induction, \(\gamma_i(G) \) is finitely generated, for all \(i > 0 \).
- Let \(R \) be the finite residual of \(G \). Since \(G/\gamma_i(G) \) is nilpotent and finitely generated, then it is residually finite and \(R \subseteq \gamma_i(G) \), for any \(i \geq 1 \).
By a result of Delizia and Nicotera (2001), if H is a finitely generated residually finite group in E_2^*, then $H/Z_2(H)$ is finite, thus $\gamma_3(H)$ is finite.

Since G/R is residually finite, we obtain $\gamma_3(G)/R$ finite and R is finitely generated.

If $R = \{1\}$, we have done. Otherwise there exists a normal subgroup S of R, $S \lhd R$ and of finite index in R. We can assume S normal in G. Then G/S is residually finite and $R \subseteq S$, a contradiction.

More generally, of course, we can formulate the following:

Question

If V is a variety defined by the law $w = 1$, is it true that $V^ \subseteq V^\circ$?*
By a result of Delizia and Nicotera (2001), if H is a finitely generated residually finite group in E_2^*, then $H/Z_2(H)$ is finite, thus $\gamma_3(H)$ is finite.

Since G/R is residually finite, we obtain $\gamma_3(G)/R$ finite and R is finitely generated.

If $R = \{1\}$, we have done. Otherwise there exists a normal subgroup S of R, $S < R$ and of finite index in R. We can assume S normal in G. Then G/S is residually finite and $R \subseteq S$, a contradiction.

More generally, of course, we can formulate the following:

Question

If V is a variety defined by the law $w = 1$, is it true that $V^ \subseteq V^\circ$?*
By a result of Delizia and Nicotera (2001), if H is a finitely generated residually finite group in E_2^*, then $H/Z_2(H)$ is finite, thus $\gamma_3(H)$ is finite.

Since G/R is residually finite, we obtain $\gamma_3(G)/R$ finite and R is finitely generated.

If $R = \{1\}$, we have done.

Otherwise there exists a normal subgroup S of R, $S < R$ and of finite index in R.

We can assume S normal in G. Then G/S is residually finite and $R \subseteq S$, a contradiction.

More generally, of course, we can formulate the following:

Question

If V is a variety defined by the law $w = 1$, is it true that $V^ \subseteq V^\circ$?*
By a result of Delizia and Nicotera (2001), if H is a finitely generated residually finite group in E_2^*, then $H/Z_2(H)$ is finite, thus $\gamma_3(H)$ is finite.

Since G/R is residually finite, we obtain $\gamma_3(G)/R$ finite and R is finitely generated.

If $R = \{1\}$, we have done.
Otherwise there exists a normal subgroup S of R, $S < R$ and of finite index in R.
We can assume S normal in G. Then G/S is residually finite and $R \subseteq S$, a contradiction.

More generally, of course, we can formulate the following:

Question

If V is a variety defined by the law $w = 1$, is it true that $V^ \subseteq V^\circ$?*
By a result of Delizia and Nicotera (2001), if H is a finitely generated residually finite group in E_2^*, then $H/Z_2(H)$ is finite, thus $\gamma_3(H)$ is finite.

Since G/R is residually finite, we obtain $\gamma_3(G)/R$ finite and R is finitely generated.

If $R = \{1\}$, we have done.

Otherwise there exists a normal subgroup S of R, $S < R$ and of finite index in R.

We can assume S normal in G. Then G/S is residually finite and $R \subseteq S$, a contradiction.

More generally, of course, we can formulate the following:

Question

If V is a variety defined by the law $w = 1$, is it true that $V^* \subseteq V^\circ$?
By a result of Delizia and Nicotera (2001), if H is a finitely generated residually finite group in E_2^*, then $H/Z_2(H)$ is finite, thus $\gamma_3(H)$ is finite.

Since G/R is residually finite, we obtain $\gamma_3(G)/R$ finite and R is finitely generated.

If $R = \{1\}$, we have done.

Otherwise there exists a normal subgroup S of R, $S < R$ and of finite index in R.

We can assume S normal in G. Then G/S is residually finite and $R \subseteq S$, a contradiction.

More generally, of course, we can formulate the following:

Question

If V is a variety defined by the law $w = 1$, is it true that $V^* \subseteq V^\circ$?
Let V be a variety of groups defined by the law $w(y_1, \ldots, y_n) = 1$. Let $V^\#$ denote the class of all groups G in which, for any infinite subsets X_1, \ldots, X_n of G, there exist $x_1 \in X_1$, \ldots, $x_n \in X_n$ such that $w(x_1, \ldots, x_n) = 1$. Obviously $V \cup F \subseteq V^\#$, where F is the class of all finite groups. It is known that for many varieties V and for many words w the equality $V \cup F = V^\#$ holds.

Theorem (P. L., M. Maj and A.H. Rhemtulla, 1995)

Let V is the variety of all nilpotent groups of class at most k defined by the law $[y_1, \ldots, y_{k+1}] = 1$. Then every $V^\#$-group is either finite or nilpotent of class at most k.
Let V be a variety of groups defined by the law $w(y_1, \ldots, y_n) = 1$. Let $V^\#$ denote the class of all groups G in which, for any infinite subsets X_1, \ldots, X_n of G, there exist $x_1 \in X_1, \ldots, x_n \in X_n$ such that $w(x_1, \ldots, x_n) = 1$.

Obviously $V \cup F \subseteq V^\#$, where F is the class of all finite groups. It is known that for many varieties V and for many words w the equality $V \cup F = V^\#$ holds.

Theorem (P. L., M. Maj and A.H. Rhemtulla, 1995)

Let V is the variety of all nilpotent groups of class at most k defined by the law $[y_1, \ldots, y_{k+1}] = 1$. Then every $V^\#$-group is either finite or nilpotent of class at most k.
Let V be a variety of groups defined by the law $w(y_1, \ldots, y_n) = 1$. Let $V^\#$ denote the class of all groups G in which, for any infinite subsets X_1, \ldots, X_n of G, there exist $x_1 \in X_1, \ldots, x_n \in X_n$ such that $w(x_1, \ldots, x_n) = 1$. Obviously $V \cup F \subseteq V^\#$, where F is the class of all finite groups. It is known that for many varieties V and for many words w the equality $V \cup F = V^\#$ holds.

Theorem (P. L., M. Maj and A.H. Rhemtulla, 1995)

Let V is the variety of all nilpotent groups of class at most k defined by the law $[y_1, \ldots, y_{k+1}] = 1$. Then every $V^\#$-group is either finite or nilpotent of class at most k.
Let V be a variety of groups defined by the law $w(y_1, \ldots, y_n) = 1$. Let $V^\#$ denote the class of all groups G in which, for any infinite subsets X_1, \ldots, X_n of G, there exist $x_1 \in X_1, \ldots, x_n \in X_n$ such that $w(x_1, \ldots, x_n) = 1$. Obviously $V \cup F \subseteq V^\#$, where F is the class of all finite groups. It is known that for many varieties V and for many words w the equality $V \cup F = V^\#$ holds.

Theorem (P. L., M. Maj and A.H. Rhemtulla, 1995)

Let V be the variety of all nilpotent groups of class at most k defined by the law $[y_1, \ldots, y_{k+1}] = 1$. Then every $V^\#$-group is either finite or nilpotent of class at most k.
Let V be a variety of groups defined by the law $w(y_1, \ldots, y_n) = 1$. Let $V^\#$ denote the class of all groups G in which, for any infinite subsets X_1, \ldots, X_n of G, there exist $x_1 \in X_1, \ldots, x_n \in X_n$ such that $w(x_1, \ldots, x_n) = 1$. Obviously $V \cup F \subseteq V^\#$, where F is the class of all finite groups. It is known that for many varieties V and for many words w the equality $V \cup F = V^\#$ holds.

Theorem (P. L., M. Maj and A.H. Rhemtulla, 1995)

Let V be the variety of all nilpotent groups of class at most k defined by the law $[y_1, \ldots, y_{k+1}] = 1$. Then every $V^\#$-group is either finite or nilpotent of class at most k.

Let V be a variety of groups defined by the law $w(y_1, \ldots, y_n) = 1$. Let $V^\#$ denote the class of all groups G in which, for any infinite subsets X_1, \ldots, X_n of G, there exist $x_1 \in X_1, \ldots, x_n \in X_n$ such that $w(x_1, \ldots, x_n) = 1$.

Obviously $V \cup F \subseteq V^\#$, where F is the class of all finite groups. It is known that for many varieties V and for many words w the equality $V \cup F = V^\#$ holds.

Theorem (P. L., M. Maj and A.H. Rhemtulla, 1995)

Let V be the variety of all nilpotent groups of class at most k defined by the law $[y_1, \ldots, y_{k+1}] = 1$. Then every $V^\#$-group is either finite or nilpotent of class at most k.
For the variety of all k-Engel groups, with $k = 2, 3$ we have the following

Theorem (L.S. Spiezia, 1994, 1995)

Let V be the variety of all k-Engel groups, with $k = 2, 3$, defined by the law $[y, _k x] = 1$. Then every $V^\#$-group is either finite or k-Engel.

Generalizing previous results by L.S. Spiezia and by O. Puglisi and L.S. Spiezia, A. Abdollahi proved the following

Theorem (A. Abdollahi, 2000)

Let V be the variety of all k-Engel groups, defined by the law $[y, _k x] = 1$. Then every locally graded $V^\#$-group G is either finite or k-Engel.
For the variety of all k-Engel groups, with $k = 2, 3$ we have the following

Theorem (L.S. Spiezia, 1994, 1995)

Let V be the variety of all k-Engel groups, with $k = 2, 3$, defined by the law $[y, _k x] = 1$. Then every $V^\#$-group is either finite or k-Engel.

Generalizing previous results by L.S. Spiezia and by O. Puglisi and L.S. Spiezia, A. Abdollahi proved the following

Theorem (A. Abdollahi, 2000)

Let V be the variety of all k-Engel groups, defined by the law $[y, _k x] = 1$. Then every locally graded $V^\#$-group G is either finite or k-Engel.
For the variety of all k-Engel groups, with $k = 2, 3$ we have the following

Theorem (L.S. Spiezia, 1994, 1995)

Let V be the variety of all k-Engel groups, with $k = 2, 3$, defined by the law $[y, kx] = 1$. Then every $V^♯$-group is either finite or k-Engel.

Generalizing previous results by L.S. Spiezia and by O. Puglisi and L.S. Spiezia, A. Abdollahi proved the following

Theorem (A. Abdollahi, 2000)

Let V be the variety of all k-Engel groups, defined by the law $[y, kx] = 1$. Then every locally graded $V^♯$-group G is either finite or k-Engel.
For the variety of all k-Engel groups, with $k = 2, 3$ we have the following

Theorem (L.S. Spiezia, 1994, 1995)

Let V be the variety of all k-Engel groups, with $k = 2, 3$, defined by the law $[y, _kx] = 1$. Then every $V^\#$-group is either finite or k-Engel.

Generalizing previous results by L.S. Spiezia and by O. Puglisi and L.S. Spiezia, A. Abdollahi proved the following

Theorem (A. Abdollahi, 2000)

Let V be the variety of all k-Engel groups, defined by the law $[y, _kx] = 1$. Then every locally graded $V^\#$-group G is either finite or k-Engel.
For the variety of all k-Engel groups, with $k = 2, 3$ we have the following

Theorem (L.S. Spiezia, 1994, 1995)

Let V be the variety of all k-Engel groups, with $k = 2, 3$, defined by the law $[y, _k x] = 1$. Then every $V^\#$-group is either finite or k-Engel.

Generalizing previous results by L.S. Spiezia and by O. Puglisi and L.S. Spiezia, A. Abdollahi proved the following

Theorem (A. Abdollahi, 2000)

Let V be the variety of all k-Engel groups, defined by the law $[y, _k x] = 1$. Then every locally graded $V^\#$-group G is either finite or k-Engel.
For the variety of all k-Engel groups, with $k = 2, 3$ we have the following

Theorem (L.S. Spiezia, 1994, 1995)

Let V be the variety of all k-Engel groups, with $k = 2, 3$, defined by the law $[y, kx] = 1$. Then every $V^\#$-group is either finite or k-Engel.

Generalizing previous results by L.S. Spiezia and by O. Puglisi and L.S. Spiezia, A. Abdollahi proved the following

Theorem (A. Abdollahi, 2000)

Let V be the variety of all k-Engel groups, defined by the law $[y, kx] = 1$. Then every locally graded $V^\#$-group G is either finite or k-Engel.
For the variety of all k-Engel groups, with $k = 2, 3$ we have the following

Theorem (L.S. Spiezia, 1994, 1995)

Let V be the variety of all k-Engel groups, with $k = 2, 3$, defined by the law $[y, _k x] = 1$. Then every $V^\#$-group is either finite or k-Engel.

Generalizing previous results by L.S. Spiezia and by O. Puglisi and L.S. Spiezia, A. Abdollahi proved the following

Theorem (A. Abdollahi, 2000)

Let V be the variety of all k-Engel groups, defined by the law $[y, _k x] = 1$. Then every locally graded $V^\#$-group G is either finite or k-Engel.
It is still open the following

Question (Problem 15.1 in The Kourovka notebook)

Does the equality $V \cup F = V^\#$ hold for any variety V and for any word w?

It is known that there exist classes of groups for which the previous equality holds.

Theorem (G. Endimioni, 1995)

Let V be a variety of groups defined by the law $w = 1$. Then an infinite $V^\#$-group G is a V-group in the following cases:

- G is locally nilpotent;
- G is finitely generated and soluble, and every finitely generated soluble V-group is polycyclic;
- G is locally soluble or locally finite, and every finitely generated soluble V-group is nilpotent.
It is still open the following

Question (Problem 15.1 in The Kourovka notebook)

Does the equality $V \cup F = V^\#$ hold for any variety V and for any word w?

It is known that there exist classes of groups for which the previous equality holds.

Theorem (G. Endimioni, 1995)

Let V be a variety of groups defined by the law $w = 1$. Then an infinite $V^\#$-group G is a V-group in the following cases:

- G is locally nilpotent;
- G is finitely generated and soluble, and every finitely generated soluble V-group is polycyclic;
- G is locally soluble or locally finite, and every finitely generated soluble V-group is nilpotent.
It is still open the following

Question (Problem 15.1 in The Kourovka notebook)

Does the equality $V \cup F = V^\#$ hold for any variety V and for any word w?

It is known that there exist classes of groups for which the previous equality holds.

Theorem (G. Endimioni, 1995)

Let V be a variety of groups defined by the law $w = 1$. Then an infinite $V^\#$-group G is a V-group in the following cases:

- G is locally nilpotent;
- G is finitely generated and soluble, and every finitely generated soluble V-group is polycyclic;
- G is locally soluble or locally finite, and every finitely generated soluble V-group is nilpotent.
It is still open the following

Question (Problem 15.1 in The Kourovka notebook)

Does the equality $V \cup F = V^\#$ hold for any variety V and for any word w?

It is known that there exist classes of groups for which the previous equality holds.

Theorem (G. Endimioni, 1995)

*Let V be a variety of groups defined by the law $w = 1$. Then an infinite $V^\#$-group G is a V-group in the following cases:

- G is locally nilpotent;
- G is finitely generated and soluble, and every finitely generated soluble V-group is polycyclic;
- G is locally soluble or locally finite, and every finitely generated soluble V-group is nilpotent.*
It is still open the following

Question (Problem 15.1 in The Kourovka notebook)

Does the equality $V \cup F = V^\#$ hold for any variety V and for any word w?

It is known that there exist classes of groups for which the previous equality holds.

Theorem (G. Endimioni, 1995)

*Let V be a variety of groups defined by the law $w = 1$. Then an infinite $V^\#$-group G is a V-group in the following cases:

 - G is locally nilpotent;
 - G is finitely generated and soluble, and every finitely generated soluble V-group is polycyclic;
 - G is locally soluble or locally finite, and every finitely generated soluble V-group is nilpotent.*
It is still open the following

Question (Problem 15.1 in The Kourovka notebook)

Does the equality $V \cup F = V^\#$ hold for any variety V and for any word w?

It is known that there exist classes of groups for which the previous equality holds.

Theorem (G. Endimioni, 1995)

Let V be a variety of groups defined by the law $w = 1$. Then an infinite $V^\#$-group G is a V-group in the following cases:

- G is locally nilpotent;
- G is finitely generated and soluble, and every finitely generated soluble V-group is polycyclic;
- G is locally soluble or locally finite, and every finitely generated soluble V-group is nilpotent.
It is still open the following

Question (Problem 15.1 in The Kourovka notebook)

Does the equality $V \cup F = V^\#$ hold for any variety V and for any word w?

It is known that there exist classes of groups for which the previous equality holds.

Theorem (G. Endimioni, 1995)

Let V be a variety of groups defined by the law $w = 1$. Then an infinite $V^\#$-group G is a V-group in the following cases:

- G is locally nilpotent;
- G is finitely generated and soluble, and every finitely generated soluble V-group is polycyclic;
- G is locally soluble or locally finite, and every finitely generated soluble V-group is nilpotent.
It is still open the following

Question (Problem 15.1 in The Kourovka notebook)

Does the equality $V \cup F = V^\#$ hold for any variety V and for any word w?

It is known that there exist classes of groups for which the previous equality holds.

Theorem (G. Endimioni, 1995)

Let V be a variety of groups defined by the law $w = 1$. Then an infinite $V^\#$-group G is a V-group in the following cases:

- G is locally nilpotent;

- G is finitely generated and soluble, and every finitely generated soluble V-group is polycyclic;

- G is locally soluble or locally finite, and every finitely generated soluble V-group is nilpotent.*
It is still open the following

Question (Problem 15.1 in The Kourovka notebook)

Does the equality $V \cup F = V^\#$ hold for any variety V and for any word w?

It is known that there exist classes of groups for which the previous equality holds.

Theorem (G. Endimioni, 1995)

Let V be a variety of groups defined by the law $w = 1$. Then an infinite $V^\#$-group G is a V-group in the following cases:

- G is locally nilpotent;
- G is finitely generated and soluble, and every finitely generated soluble V-group is polycyclic;
- G is locally soluble or locally finite, and every finitely generated soluble V-group is nilpotent.*

Bibliography

